Polymers that confer changes in optical properties in response to chemical or mechanical cues offer diverse sensing applications, particularly if this stimuli response is accessible in humid or aqueous environments. In this study, luminescent hydrogels were fabricated using a facile aqueous process by incorporating lanthanide ions and carbon dots (CD) into a network of polyacrylamide and poly(acrylic acid). White luminescence was obtained by tuning the balance of blue-light-emitting CD to green- and red-light-emitting lanthanide ions. Exploiting the combined specific sensitivities of the different emitters, the luminescent hydrogel showed chromic responsiveness to multiple stimuli, including pH, organic vapors, transition-metal ions, and temperature. The white-light-emitting hydrogel was also stretchable with a fracture strain of 400%. We envision this photoluminescent hydrogel to be a versatile and multifunctional material for chemical and environmental sensing.
Hydrogel-based soft mechanochromic materials that display colorimetric changes upon mechanical stimuli have attracted wide interest in sensors and display device applications. A common strategy to produce mechanochromic hydrogels is through photonic structures, in which mechanochromism is obtained by strain-dependent diffraction of light. Here, a distinct concept and simple fabrication strategy is presented to produce luminescent mechanochromic hydrogels based on a double-layer design. The two layers contain different luminescent species-carbon dots and lanthanide ions-with overlapped excitation spectra and distinct emission spectra. The mechanochromism is rendered by strain-dependent transmittance of the top-layer, which regulates light emission from the bottom-layer to control the overall hydrogel luminescence. An analytical model is developed to predict the initial luminescence color and color changes as a function of uniaxial strain. Finally, this study demonstrates proof-of-concept applications of the mechanochromic hydrogel for pressure and contact force sensors as well as for encryption devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.