The rhombic lip (RL) is the neuroepithelium immediately adjacent to the roof plate of the fourth ventricle, and it gives rise to various brainstem and cerebellar cell types. Our study shows that the bHLH (basic helix-loop-helix) transcription factor Olig3 is expressed in the progenitors of RL, and ablation of Olig3 significantly affects the development of RL. In Olig3؊/؊ caudal RL, the expression level of Math1 in the dorsal interneuron 1 (dI1) domain is reduced, and the formation of four mossy-fiber nuclei is compromised; dI2-dI3 neurons are misspecified to dI4 interneurons, and the climbing-fiber neurons (inferior olive nucleus) are completely lost. In addition, the formation of brainstem (nor)adrenergic centers and first-order relay visceral sensory neurons is also dependent on Olig3. Therefore, Olig3 plays an important role in the fate specification and differentiation of caudal RL-derived neurons.
Histone deacetylase (HDAC) is a crucial component in the regulation of gene expression in various cellular processes in animal and plant cells. HDAC has been reported to play a role in embryogenesis. However, the effect of HDAC on androgamete development remains unclear, especially in gymnosperms. In this study, we used the HDAC inhibitors trichostatin A (TSA) and sodium butyrate (NaB) to examine the role of HDAC in Picea wilsonii pollen germination and pollen tube elongation. Measurements of the tip-focused Ca2+ gradient revealed that TSA and NaB influenced this gradient. Immunofluorescence showed that actin filaments were disrupted into disorganized fragments. As a result, the vesicle trafficking was disturbed, as determined by FM4-64 labeling. Moreover, the distribution of pectins and callose in cell walls was significantly altered in response to TSA and NaB. Our results suggest that HDAC affects pollen germination and polarized pollen tube growth in Picea wilsonii by affecting the intracellular Ca2+ concentration gradient, actin organization patterns, vesicle trafficking, as well as the deposition and configuration of cell wall components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.