Effective control of the cohesive force between hydrate particles is the key to prevent their aggregation, which then causes pipeline blockage. The hydrophilic–lipophilic balance (HLB) value of surfactants was proposed as an important parameter for the evaluation and design of hydrate anti-agglomerants. A microscopic manipulation method was used to measure the cohesive forces between cyclopentane hydrate particles in the presence of Tween and Span series surfactants with different HLB values; moreover, the measured cohesive force was compared with the results of calculations based on the liquid bridge force model. Combined with the surface morphology and wettability of the hydrate particles, we analyzed the mechanism by which surfactants with different HLB values influence the cohesion between hydrate particles. The results show that for both Tween (hydrophilic, HLB > 10) and Span (hydrophobic, HLB < 10) surfactants, the cohesive force between cyclopentane hydrate particles decreased with decreasing HLB. The experimental results were in good agreement with the results of calculations based on the liquid bridge force model. The cohesive force between hydrate particles increased with increasing concentration of Tween surfactants, while in the case of the Span series, the cohesive force decreased with increasing surfactant concentration. In the formation process of cyclopentane hydrate particles, the aggregation of low-HLB surfactant molecules at the oil–water or gas–water interface increases the surface roughness and hydrophobicity of the hydrate particles and inhibits the formation of liquid bridges between particles, thus reducing the cohesion between particles. Therefore, the hydrate aggregation and the associated blockage risks can be reduced.
Abundant oil and gas reserves have been proved in carbonates, but formation damage affects their production. In this study, the characteristics and formation-damage mechanism of the carbonate reservoir formation of the MS Oilfield in the Middle East were analyzed—utilizing X-ray diffraction, a scanning electron microscope, slice identification, and mercury intrusion—and technical measures for preventing formation damage were proposed. An ‘improved ideal filling for temporary plugging’ theory was introduced, to design the particle size distribution of acid-soluble temporary plugging agents; a water-based drill-in fluid, which did not require gel-breaker treatment, was formed, and the properties of the drill-in fluid were tested. The results showed that the overall porosity and permeability of the carbonate reservoir formation were low, and that there was a potential for water-blocking damage. There were micro-fractures with a width of 80–120 μm in the formation, which provided channels for drill-in fluid invasion. The average content of dolomite is 90.25%, and precipitation may occur under alkaline conditions. The polymeric drill-in fluid had good rheological and filtration properties, and the removal rate of the filter cake reached 78.1% in the chelating acid completion fluid without using gel breakers. In the permeability plugging test, the drill-in fluid formed a tight plugging zone on the surface of the ceramic disc with a pore size up to 120 μm, and mitigated the fluid loss. In core flow tests, the drill-in fluid also effectively plugged the formation core samples by forming a thin plugging layer, which could be removed by the chelating acid completion fluid, indicated by return permeability higher than 80%. The results indicated that the drill-in fluid could mitigate formation damage without the treatment of gel breakers, thus improving the operating efficiency and safety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.