This study investigated the prevalence and risk factors of urinary incontinence (UI) among perimenopausal women in Wuhan. A cross-sectional survey was performed on 1067 women aged 40-65 years sampled in Wuhan urban area from April to October 2014. Information about demographic characteristics, menstruation, parity and UI symptoms was collected using a questionnaire. The data were evaluated by Chi-square test and multiple Logistic regression analysis. The prevalence rate of UI was 37.2%, with stress UI (32.2%) being more prevalent than urgency UI (21.6%) and mixed UI (16.6%). 31.2% women with UI stated that UI had negative impact on their life. Risk factors for UI included menstrual disorder, menopause, overweight, perineal laceration, atrophic vaginitis, constipation and pelvic organ prolapse. Appropriate investigation apropos the factors associated with UI should be performed to diminish its impact on women's life.
Background As one of the most common gynaecological malignant tumors, cervical cancer (CC) has become an important public health issue. Emerging evidence has revealed long non-coding RNAs (lncRNAs) are crucial regulators of biological functions in cancers, including CC. And the oncogenic role of LINC00441 has been verified in hepatocellular carcinoma (HCC). But the molecular mechanism and biological functions of LINC00441 in CC remain unknown. Methods qRT-PCR analysis detected the expression of genes in CC tissues or cells. CCK-8, colony formation, flow cytometry, transwell, western blot assays as well as animal studies were conducted to analyze the function of LINC00441 in CC. Luciferase reporter, RIP and RNA pull down assays were applied to verify the binding relations among the indicated genes. Results LINC00441 was upregulated in CC tissues and cells. Further, LINC00441 depletion repressed cell proliferation and motility in vitro as well as tumor growth in vivo. LINC00441 could sponge miR-450b-5p to upregulate RAB10 expression. Finally, miR-450b-5p inhibitor or RAB10 upregulation counteracted LINC00441 knockdown-mediated function on the development of CC. Conclusions LINC00441 drives CC progression by targeting miR-450b-5p/RAB10 axis, which might provide new idea for researching CC-related molecular mechanism.
The shock-induced serine protease HtrA1 is a potential regulator of human placenta development during pregnancy. The protein contains a functional PDZ domain that has been solved in complex with a phage display-derived heptapeptide: Asp-6 Ser-5 Arg-4 Ile-3 Trp-2 Trp-1 Val0 . In this study, a rationally designed halogen bond was introduced to the domain-peptide complex based on its NMR structure in solution. We computationally compared the stabilization energies and hindrance effects due to the presence of different halogens X (X = F, Cl, Br, or I), using a hybrid quantum mechanics/molecular mechanics (QM/MM) approach, and found that the Br atom could considerably promote the peptide binding free energy (ΔΔG = -5.2 kcal/mol). Fluorescence assays confirmed that the peptide affinity to the HtrA1 PDZ domain was improved by approximately sevenfold upon bromination. Structural analysis identified a geometrically perfect halogen bond between the Br atom of the peptide Trp-1 residue and the carbonyl O atom of the HtrA1 Ile385 residue, with a bond length and an interaction energy of d = 3.20 Å and ΔE = -3.7 kcal/mol, respectively.
Background Adult mesenchymal stem cells (MSCs) have been studied extensively for regenerative medicine; however, they have limited proliferation in vitro, and the long culture time induces cell senescence. MSCs also contribute to tissue repair through their paracrine function. In this study, we sought to examine the paracrine effects of human smooth muscle cell progenitors (pSMC) on the urethra and adjacent vagina of stress urinary incontinence rodents. We use human pluripotent stem cell (PSC) lines to derive pSMCs to overcome the issue of decreased proliferation in tissue culture and to obtain a homogenous cell population. Method Three human PSC lines were differentiated into pSMCs. The conditioned medium (CM) from pSMC culture, which contain pSMC secretomes, was harvested. To examine the effect of the CM on the extracellular matrix of the lower urinary tract, human bladder smooth muscle cells (bSMCs) and vaginal fibroblasts were treated with pSMC-CM in vitro. Stress urinary incontinence (SUI) was induced in rats by surgical injury of the urethra and adjacent vagina. SUI rats were treated with pSMC-CM and monitored for 5 weeks. Urethral pressure testing was performed prior to euthanasia, and tissues were harvested for PCR, Western blot, and histological staining. Kruskal-Wallis one-way ANOVA test and Student t test were used for statistical comparisons. Results pSMC-CM upregulated MMP-2, TIMP-2, collagen, and elastin gene expression, and MMP-9 activity in the human bladder and vaginal cells consistent with elastin metabolism modulation. pSMC-CM treatment in the SUI rat improved urethral pressure (increase in leak point pressure compared to intact controls, p < 0.05) and increased collagen and elastin expression in the urethra and the adjacent vagina. Conclusion Conditioned media from smooth muscle cell progenitors derived from human pluripotent stem cells improved urethral leak point pressure and collagen and elastin content in the SUI rat. These findings suggest a novel therapeutic potential for PSC-based treatments for SUI and pelvic floor disorders where tissues are affected by collagen, elastin, and smooth muscle loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.