Enteromorpha prolifera (E. prolifera), a tonic food in East Asian countries, is frequently studied for their pharmaceutical and healthcare applications. However, limited research has focused on antitumor peptides derived from this edible seaweed. In this study, we aimed to investigate the anticancer properties of peptides isolated from the hydrolysate of E. prolifera generated by a plethora of proteases including trypsin, papain, bromelain, and alkaline protease. The results showed that the hydrolysate produced by papain digestion exhibited remarkably stronger anticancer activity and was subjected to further purification by ultrafiltration and sequential chromatography. One heptapeptide, designated HTDT-6-2-3-2, showed significant antiproliferation activity towards several human cancer cell lines. The IC50 values for NCI-H460, HepG2, and A549 were 0.3686 ± 0.0935 mg/mL, 1.2564 ± 0.0548 mg/mL, and 0.9867 ± 0.0857 mg/mL, respectively. Moreover, results from flow cytometry confirmed that cell apoptosis was induced by HTDT-6-2-3-2 in a dose-dependent manner. The amino acid sequence for this heptapeptide, GPLGAGP, was characterized by Edman degradation and further verified by Liquid Chromatography-Tandem Mass Spectrometry. In silico analysis results suggested that XIAP could be a potential target for HTDT-6-2-3-2. Molecular docking simulation showed that HTDT-6-2-3-2 could occupy a shallow pocket in the BIR3 domain of XIAP, which is involved in the inhibitory effect of caspase-9 activation. In conclusion, this E. prolifera derived peptide exhibited strong anticancer properties, which could be explored for pharmaceutical applications.
Iron is essential for almost all bacteria, and iron homeostasis is precisely controlled by the ferric uptake regulator (Fur). The Fur regulons have been well characterized in some model bacteria, yet little is known in the common opportunistic pathogen Proteus vulgaris. In this study, Fur regulon and iron-responsive genes in P. vulgaris were mainly defined by in silico and proteomic analyses. The results showed that about 250 potential Fur-regulated operons including 14 transcriptional factors were predicted, while 559 proteins exhibited differential expression in response to iron deficiency, not all being directly regulated by Fur, such as transcriptional factors lexA, recA, narL, and arcA. Collectively, these results demonstrated that Fur functioned as a global regulatory protein to repress or activate expression of a large repertoire of genes in P. vulgaris; besides, not all the iron-responsive genes were directly regulated by Fur, whereas indirectly regulated through other mechanisms such as additional transcriptional regulatory proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.