Over one hundred artifacts, including shards, chopped wood, bronze and iron ware debris as well as footprints, have been discovered during archaeological investigations at and around the central Taklamakan Desert Yuansha Site (38°52′N, 81°35′E). Dating ( 14 C and OSL) and landform study show that the present-day dry Keriya River once sustained an oasis human settlement in 2.6 ka BP, historically falling into the Spring and Autumn Period (716-475 BCE) of Chinese history. The chronology and archaeological interpretations also show that some 400 years later, the local Keriya River channel had shifted 40 km southeast to sustain a Western Han (206 BCE-25 CE) Wumi settlement at the Karadun site. In the meantime, river-channel migration had allowed reoccupation of a site west of Yuansha City around 1.9 ka BP (abandoned again by 1.6 ka BP). The remains' chronology shows that this site was affiliated to Wumi culture and Eastern Han (24-220 CE) dynasty rule. Palaeoclimatic records indicate that the migrations of the river and oasis settlers between 2.7 and 1.6 ka BP were coeval with Central Asian climate changes. Yuansha City was built just after the end of 2.8 ka BP glacier advances in western China, suggesting that release of more water during the subsequent glacier recession may have facilitated oasis development such that Iron Age European peoples could settle in the Tarim Basin. As shown from analysis of archeological remains, not only at Yuansha but also in other ancient cities in the Tarim such as Loulan and Jingjue (Niya), conditions around 1.6 ka BP were dry enough to cause oasis decline. Thus, the results reported here enhance our knowledge about environmental changes and their effects on human activities and cultural evolution in western China and will stimulate further interdisciplinary studies of landscape and oasis history in the Tarim Basin. Taklamakan, Keriya, river, Yuansha, settlement migrate, 2.8 ka BP, 14 C, OSL Citation: Zhang F, Wang T, Yimit H, et al. Hydrological changes and settlement migrations in the Keriya River delta in central Tarim Basin ca. 2.7-1.6 ka BP:
The spatiotemporal pattern of precipitation is significantly changing with global climate change. Snowfall is a solid phase of precipitation and an important water resource. With two gridded data sets of APHRO (Asia Precipitation‐Highly‐Resolved Observational Data Integration Towards Evaluation of Water Resources) and CN05.1, this study analyses the changes in the spatiotemporal pattern of snowfall in a snow‐dominant region of China from 1961 to 2015. The results indicate the significant increasing trend of winter snowfall in horizontal and altitude dimension in snow‐dominant regions, but the winter snowing season length shortened. For the frequency of snowfall intensity level, light, and heavy snowfall and snowstorms increased, but moderate snowfall showed no change. However, the intensity of extreme snowfall in once‐in‐a‐century was decreasing in all of the snow‐dominant regions. In the altitude dimension, the increasing trend in snow‐dominant conditions was not uniform, which may be related to change in air temperature and water vapour through the vertical atmospheric levels. The upwards trend in snowfall may be caused by the increase of atmospheric water content rather than the change of snowy weather conditions. In addition, the change values of climate indices can also contribute to snowfall increasing in snow‐dominant regions.
The potential impact of natural factors on the runoff of intermittent rivers and ephemeral streams (IRES) has been largely ignored in the Tarim Basin, China. A representative example is the Keriya River. To quantify the long-term dynamic variations in lower reach surface runoff of IRES, river length, defined as the distance between a selected fix point along the perennial river segment to its dynamic, ephemeral end, was used as an indicator. Using a total of 272 remote sensing images, we digitized and measured the distance (river length) between the center of Yutian County and the river’s end point on each image, and then calculated monthly inter-annual and intra-annual variations in length of the lower Keriya River from 2000 to 2019. Hydrometeorological data were combined with descriptors of anthropogenic disturbances to assess the relative influence of natural factors and anthropogenic disturbances on lower reach river runoff. The results showed that intra-annual variations in river length fluctuated seasonally, with the minimum value occurring in June; two main peaks occurred in March and August. The minimum June value in river length was closely linked to an increase in agricultural water demand and a decrease in upper reach runoff. The August peak in river length was related to the peak values in upper reach runoff and agricultural water demand; upper reach runoff made a significant contribution because the former was about 20% more than the latter in summer. The March peak corresponded to elevated lower reach groundwater levels and to the melting of ice along river channels. Inter-annual variations in river length were due to inter-annual variations in upper reach runoff and middle reach agricultural water use which increased slightly during the study period. Inter-annual variations in frequency and amplitude of the fluctuations in river length were mainly controlled by changes in upper reach runoff. The minimum in river length in 2009 was consistent with the low in upper reach runoff of the Keriya River and other rivers in the Tarim Basin. The most significant factors controlling variations in river length are natural in origin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.