Background Salinization seriously threatens land use efficiency and crop yields across the world. Understanding the mechanisms plants use to protect against salt stress will help breeders develop salt-tolerant vegetable crops. Okra ( Abelmoschus esculentus L.) is an important vegetable crop of the mallow family, which is now cultivated in warm regions worldwide. To understand the effects of salt stress on the protein level of okra, a comparative proteomic analysis of okra seedlings grown in the presence of 0 or 300 mmol L − 1 NaCl treatment was performed using an integrated approach of Tandem Mass Tag labeling and LC-MS/MS integrated approach. Results A total of 7179 proteins were identified in this study, for which quantitative information was available for 5774 proteins. In the NaCl/control comparison group, there were 317 differentially expressed proteins (DEPs), of which 165 proteins were upregulated and 152 proteins downregulated in the presence of NaCl. Based on the above data, we carried out a systematic bioinformatics analysis of proteins with information, including protein annotation, domain characteristics, functional classification, and pathway enrichment. Enriched gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that the DEPs were most strongly associated with “response to stress” and “protein processing in endoplasmic reticulum”. Furthermore, several heat shock proteins were identified as DEPs. Conclusions This information provides a reference direction for further research on the okra proteome in the downstream of the salt stress response, with our data revealing that the responses of okra to salt stress involves by various pathways. Electronic supplementary material The online version of this article (10.1186/s12864-019-5737-7) contains supplementary material, which is available to authorized users.
Fritillaria is a perennial herb with medicinal properties. There are 158 Fritillaria species worldwide, 33 of which have reported therapeutic efficacy. Alkaloids are the principal constituents in Fritillaria. Fritillaria species growing at 2700–4000 m are the sources of extract namely Chuan Beimu (the Pharmacopoeia of the People’s Republic of China, 2020 Edition), with low biomass, mainly containing more 5α-cevanine isosteroidal alkaloids with cis-configuration. In contrast, species growing below 1500 m are usually taller than 50 cm, and they mainly contain more trans-configuration isosteroidal alkaloids. There are two schemes of the biosynthetic pathways of steroidal alkaloids with different frameworks and catalytic reactions and combined high-throughput omics data. Based on the distributed elevations, Fritillaria species were divided into three major categories, which met classification features based on phylogenetic analysis or morphological features. Artificial or in vitro cultivations are effective strategies for balancing economical requirements and ecological protection. Fritillaria species growing at lower altitudes can be cultivated by bulb reproduction, but species growing at higher altitudes still rely mainly on gathering a large number of wild resources. Integration of asexual tissue culture and bulb reproduction with sexual artificial or imitated wild cultivation may create a very promising and effective way to maintain sustainable industrial development of Fritillaria.
The chaperonin 60 (Cpn60) protein is of great importance to plants due to its involvement in modulating the folding of numerous chloroplast protein polypeptides. In chloroplasts, Cpn60 is differentiated into two subunit types—Cpn60α and Cpn60β and the rice genome encodes three α and three β plastid chaperonin subunits. However, the functions of Cpn60 family members in rice were poorly understood. In order to investigate the molecular mechanism of OsCpn60β1, we attempted to disrupt the OsCpn60β1 gene by CRISPR/Cas9-mediated targeted mutagenesis in this study. We succeeded in the production of homozygous OsCpn60β1 knockout rice plants. The OsCpn60β1 mutant displayed a striking albino leaf phenotype and was seedling lethal. Electron microscopy observation demonstrated that chloroplasts were severely disrupted in the OsCpn60β1 mutant. In addition, OsCpn60β1 was located in the chloroplast and OsCpn60β1 is constitutively expressed in various tissues particularly in the green tissues. The label-free qualitative proteomics showed that photosynthesis-related pathways and ribosomal pathways were significantly inhibited in OsCpn60β1 mutants. These results indicate that OsCpn60β1 is essential for chloroplast development in rice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.