Many Cryo-EM datasets contain structural heterogeneity due to functional or nonfunctional dynamics that conventional reconstruction methods may fail to resolve. Here we propose a new method, OPUS-DSD (Deep Structural Disentanglement), which can reliably reconstruct the structural landscape of cryo-EM data by directly translating the 2D cryo-EM images into 3D structures. The method adopts a convolutional neural network and is regularized by a latent space prior that encourages the encoding of structural information. The performance of OPUS-DSD was systematically compared to a previously reported method, cryoDRGN, on synthetic and real cryo-EM data. It consistently outperformed existing methods, resolved large or small structural heterogeneity, and improved the final reconstructions of tested systems even on highly noisy cryo-EM data. The results have shown that OPUS-DSD should be particularly suitable for cases in which the high structural flexibilities cannot easily be represented by rigid-body movements. Therefore, OPUS-DSD represents a valuable tool that can not only recover functionally-important structural dynamics missed in a traditional cryo-EM refinement, but also improve the final reconstruction by increasing homogeneity in a dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.