In a paper by the first author it was shown that for certain arithmetical results on conjugacy class sizes it is enough to only consider the vanishing conjugacy class sizes. In this paper we further weaken the conditions to consider only vanishing elements of prime power order.
Let $G$ be a finite $p$-solvable group and let ${G}^{\ast } $ be the set of elements of primary and biprimary orders of $G$. Suppose that the conjugacy class sizes of ${G}^{\ast } $ are $\{ 1, {p}^{a} , n, {p}^{a} n\} $, where the prime $p$ divides the positive integer $n$ and ${p}^{a} $ does not divide $n$. Then $G$ is, up to central factors, a $\{ p, q\} $-group with $p$ and $q$ two distinct primes. In particular, $G$ is solvable.
Let G be a finite group. We extend Alan Camina's theorem on conjugacy classes sizes which asserts that if the conjugacy classes sizes of G are {1, p a , q b , p a q b }, where p and q are two distinct primes and a and b are integers, then G is nilpotent. We show that let G be a group and assume that the conjugacy classes sizes of elements of primary and biprimary orders of G are exactly {1, p a , n, p a n} with (p, n) = 1, where p is a prime and a and n are positive integers. If there is a p-element in G whose index is precisely p a , then G is nilpotent and n = q b for some prime q = p.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.