Motivation Recent breakthroughs of single-cell RNA sequencing (scRNA-seq) technologies offer an exciting opportunity to identify heterogeneous cell types in complex tissues. However, the unavoidable biological noise and technical artifacts in scRNA-seq data as well as the high dimensionality of expression vectors make the problem highly challenging. Consequently, although numerous tools have been developed, their accuracy remains to be improved. Results Here, we introduce a novel clustering algorithm and tool RCSL (Rank Constrained Similarity Learning) to accurately identify various cell types using scRNA-seq data from a complex tissue. RCSL considers both local similarity and global similarity among the cells to discern the subtle differences among cells of the same type as well as larger differences among cells of different types. RCSL uses Spearman’s rank correlations of a cell’s expression vector with those of other cells to measure its global similarity, and adaptively learns neighbour representation of a cell as its local similarity. The overall similarity of a cell to other cells is a linear combination of its global similarity and local similarity. RCSL automatically estimates the number of cell types defined in the similarity matrix, and identifies them by constructing a block-diagonal matrix, such that its distance to the similarity matrix is minimized. Each block-diagonal submatrix is a cell cluster/type, corresponding to a connected component in the cognate similarity graph. When tested on 16 benchmark scRNA-seq datasets in which the cell types are well-annotated, RCSL substantially outperformed six state-of-the-art methods in accuracy and robustness as measured by three metrics. Availability The RCSL algorithm is implemented in R and can be freely downloaded at https://cran.r-project.org/web/packages/RCSL/index.html. Supplementary information Supplementary data are available at Bioinformatics online.
Single-cell RNA sequencing (scRNA-seq) technologies have been driving the development of algorithms of clustering heterogeneous cells. We introduce a novel clustering algorithm scQA, which can effectively and efficiently recognize different cell types via qualitative and quantitative analysis. It iteratively extracts quasi-trend-preserved genes to conform a consensus by representing expression patterns with dropouts qualitatively and quantitatively, and, then automatically clusters cells using a new label propagation strategy without specifying the number of cell types in advance. Validated on 20 public scRNA-seq datasets, scQA consistently outperformed 9 salient tools in both accuracy and efficiency across 16 out of 20 datasets tested, and ranked top 2 or 3 across the other 4 datasets. Furthermore, we demonstrate scQA can extract informative genes in both perspectives of biology and data wise by performing consensus, allowing genes used for landmark construction multiple characteristics, which is essential for clustering cells accurately. Overall, scQA could be a useful tool for discovery of cell types that can be integrated into general scRNA-seq analyses.
Motivation: Recent breakthroughs of single-cell RNA sequencing (scRNA-seq) technologies offer an exciting opportunity to identify heterogeneous cell types in complex tissues. However, the unavoidable biological noise and technical artifacts in scRNA-seq data as well as the high dimensionality of expression vectors make the problem highly challenging. Consequently, although numerous tools have been developed, their accuracy remains to be improved. Results: Here, we introduce a novel clustering algorithm and tool RCSL (Rank Constrained Similarity Learning) to accurately identify various cell types using scRNA-seq data from a complex tissue. RCSL considers both local similarity and global similarity among the cells to discern the subtle differences among cells of the same type as well as larger differences among cells of different types. RCSL uses Spearman′s rank correlations of a cell′s expression vector with those of other cells to measure its global similarity, and adaptively learns neighbour representation of a cell as its local similarity. The overall similarity of a cell to other cells is a linear combination of its global similarity and local similarity. RCSL automatically estimates the number of cell types defined in the similarity matrix, and identifies them by constructing a block-diagonal matrix, such that its distance to the similarity matrix is minimized. Each block-diagonal submatrix is a cell cluster/type, corresponding to a connected component in the cognate similarity graph. When tested on 16 benchmark scRNA-seq datasets in which the cell types are well-annotated, RCSL substantially outperformed six state-of-the-art methods in accuracy and robustness as measured by three metrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.