To clarify the role of temperature in the thaumasite formation of cement mortar under magnesium sulfate solution at two different temperature, the corrosion products and microstructure of cement-based materials with different amounts and particle sizes of limestone powder (LP) were quantitatively analyzed by Fourier Transform Infra-Red (FTIR), thermogravimetric analysis (TGA), X-ray Diffraction (XRD), Scanning Electronic Microscopy (SEM) and Energy Dispersive Spectrometer (EDS). At 5oC, the main corrosion product of cement mortar was gypsum and thaumasite. At 20°C, the main corrosion products of cement mortar were gypsum and ettringite. When the temperature increased from 5°C to 20°C, the contents of ettringite, thaumasite and gypsum changed from 0.3%, 12.3% and 64.6% to 4.6%, 0% and 57.0%, respectively. The formation of thaumasite was the combination of direct reaction with ettringite transformation. The incorporation of LP accelerated the corrosion of mortars, and the change coefficient of compressive strength of mortars decreased from 100% to 47.3% when its content increased from 0% to 30%. Low temperature and incorporation of finer limestone powder enhanced the corrosion of magnesium sulfate solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.