An ice-templating process was used to fabricate polymer/MOF monoliths, specifically chitosan/UiO-66, as adsorbents for water treatment. The ice-templated macropores enhanced mass transport, while the monoliths could be easily recovered from solution. This was demonstrated by the adsorption of methylchlorophenoxypropionic acid (MCPP, a herbicide compound) from dilute aqueous solution. To enhance the stability, the freeze-dried monoliths were treated with NaOH solution, solvent exchanged, and dried. The treated chitosan/UiO-66 monolith achieved an adsorption capacity of 34.33 mg g (a maximum theoretic value of 334 mg g by the Langmuir model), closer to the capacity (36.00 mg g) of the freshly prepared UiO-66 nanoparticles and much higher than that of the NaOH-washed UiO-66 nanoparticles (18.55 mg g), by performing the tests in 60 ppm MCPP solution. The composite monolith could be easily picked up using tweezers and used for recycling tests. Over 80% of the adsorption capacity was retained after three more cycles. The powder X-ray diffraction and N sorption studies suggested the crystalline structure of UiO-66 was destroyed during NaOH washing procedure. This, however, provides the potential to improve the adsorption capacity by developing methods to fabricate true polymer/MOF composites.
Compared with commercial polyolefin separators, the poor mechanical performance of electrospun polymeric membranes limits their usage as battery separators. Herein, poly(methyl methacrylate) (PMMA) and SiO2 nanoparticles were introduced into electrospun poly(vinylidene fluoride) (PVdF) membranes to form a PVdF/PMMA/SiO2 nonwoven membrane. A hot‐pressing method controlled the thickness of the electrospun membranes and improved their mechanical performance further. SEM tests show that PMMA partly melts in the composite membrane, which bonds neighboring electrospun fibers to reinforce the mechanical strength of the membrane. Uniformly distributed SiO2 nanoparticles on the electrospun fibers could supply higher resistance to mechanical impact. As a result, the composite membrane shows a high tensile strength (32.69 MPa) and high elongation at breakage (137.50 %). Differential scanning calorimetry and hot oven tests indicate that the composite membrane has excellent thermal stability. Furthermore, the addition of PMMA and SiO2 can decrease the crystallinity of PVdF and further improve the absorption of liquid electrolyte. According to the results of electrochemical tests, the composite membrane exhibits higher ionic conductivity (4.0×10−3 S cm−1) and lower interfacial resistance than those of the Celgard separator. The lithium‐ion cell assembled from the composite membrane exhibits more stable cycle performance, higher discharge capacity (158 mA h g−1), and excellent capacity retention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.