There are some limitations in traditional ocean scalar field visualization methods, such as inaccurate expression and low efficiency in the three-dimensional digital Earth environment. This paper presents a spherical volume-rendering method based on adaptive ray casting to express ocean scalar field. Specifically, the minimum bounding volume based on spherical mosaic is constructed as the proxy geometry, and the depth texture of the seabed terrain is applied to determine the position of sampling points in the spatial interpolation process, which realizes the fusion of ocean scalar field and seabed terrain. Then, we propose an adaptive sampling step algorithm according to the heterogeneous depth distribution and data change rate of the ocean scalar field dataset to improve the efficiency of the ray-casting algorithm. In addition, this paper proposes a nonlinear color-mapping enhancement scheme based on the skewness characteristics of the datasets to optimize the expression effect of volume rendering, and the transparency transfer function is designed to realize volume rendering and local feature structure extraction of ocean scalar field data in the study area.
In three-dimensional (3D) digital Earth environment, there are many problems when using the existing methods to express the ocean current, such as uneven distribution of seed points, density leap in scale change and messy visualization. In this paper, a new dynamic visualization method of multi-hierarchy flow field based on particle system is proposed; Specifically, three typical spherical uniform algorithms are studied and compared, and the streamline becoming denser from the equator to the poles on globe is eliminated by placing seed points using Marsaglia polar method as the most efficient. In addition, a viewport-adaptive adjustment algorithm is proposed, which realizes that the density of particles is always suitable to any viewing distance during continuous zooming. To solve the visual representation deficiency, we design a new dynamic pattern to enhance the expression and perception of current, which makes up for the shortcoming of the arrow glyph and streamline methods. Finally, a prototype of GPU parallel and viewport coherence is achieved, whose feasibility and effectiveness are verified by a series of experiments. The results show that our method can not only represent ocean current data clearly and efficiently, but also has outstanding uniformity and hierarchy effect.
The particle system is widely used in vector field feature visualization due to its dynamics and simulation. However, there are some defects of the vector field visualization method based on the Euler fields, such as unclear feature expression and discontinuous temporal expression, so the method cannot effectively express the characteristics of wind field on the temporal scale. We propose a Lagrangian visualization method based on spatio-temporal interpolation to solve these problems, which realizes the fusion and expression of the particle system and the time-varying wind data based on the WebGL shader. Firstly, the linear interpolation algorithm is used to interpolate to obtain continuous and dense wind field data according to the wind field data at adjacent moments. Then, we introduce the Lagrangian analysis method to study the structure of the wind field and optimize the visualization effect of the particle system based on Runge–Kutta algorithms. Finally, we adopt the nonlinear color mapping method with double standard deviation (2SD) to improve the expression effect of wind field features. The experimental results indicate that the wind visualization achieves a comprehensive visual effect and the rendering frame rate is greater than 45. The methods can render the particles smoothly with stable and outstanding uniformity when expressing continuous spatio-temporal dynamic visualization characteristics of the wind field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.