h i g h l i g h t sEcosystem respiration and its components were mainly controlled by temperature. Q 10 values varied widely with time and among ecosystem respiratory components. Summer flood duration could largely alter drawdown period carbon sink intensity.
a r t i c l e i n f o
a b s t r a c tLittle is known about the components of ecosystem respiration from a subtropical littoral wetland with dramatic annual inundation dynamics. In this study, we investigated ecosystem respiration and its components in a Poyang lake Carex meadow during the drawdown periods from May 2009 to June 2011. Both ecosystem respiration and its components showed clear temporal variation pattern, with temperature being the dominant control. Ecosystem respiration ranged from 98.01 to 1359.25 mg CO 2 m À2 h
À1. Shoot and root respiration contributed approximately 36% and 26% to the ecosystem respiration, respectively, whereas microbial respiration accounted for 38% of the ecosystem respiration. The ratio of total soil respiration to ecosystem respiration varied from 0.45 to 0.90, depending on growing season stages. Their Q 10 values ranged from 1.72 to 2.51, with the maximum for shoot respiration and the minimum for microbial respiration. In addition, the Q 10 values varied with time and among ecosystem respiratory components and hence could not be treated as a constant. None of the respiration measurements was significantly related to soil moisture, suggesting that soil moisture was not a limiting environmental factor for respiratory activity during the drawdown periods in this meadow. The Carex meadow acted as strong carbon sink during the drawdown periods due to double growing seasons, but the previous summer flood duration could substantially alter carbon sink intensity in the following drawdown period. The total carbon sink of the littoral zone of Poyang Lake during drawdown periods was estimated to be 0.17e0.59 Tg C yr
À1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.