It has been shown that circular RNAs, a class of non-coding RNA molecules, play an important role in the regulation of glucose and lipid homeostasis. In the present study, we sought to investigate the function of circular RNA HIPK3 (circHIPK3) in diabetes-associated metabolic disorders, including hyperglycemia and insulin resistance. Results show that oleate stimulated circHIPK3 increase, and that circHIPK3 enhanced the stimulatory effect of oleate on adipose deposition, triglyceride (TG) content, and cellular glucose content in HepG2 cells. MiR-192-5p was the potential target of circHIPK3, since circHIPK3 significantly decreased miR-192-5p mRNA level, whereas anti-circHIPK3 significantly increased miR-192-5p mRNA level. Further study shows that transcription factor forkhead box O1 (FOXO1) was a downstream regulator of miR-192-5p, since miR-192-5p significantly decreased FOXO1 expression, whereas circHIPK3 significantly increased FOXO1 expression. Notably, the inhibitory effect of miR-192-5p was significantly reversed by circHIPK3. In vivo study shows that anti-miR-192-5p significantly increased blood glucose content, which was significantly inhibited by FOXO1 shRNA. MiR-192-5p significantly decreased adipose deposition and TG content in HepG2 cells, which was significantly reversed by the co-treatment with circHIPK3. Forskolin/dexamethasone (FSK/DEX) significantly increased cellular glucose, mRNA level of phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase (G6Pase), and this stimulatory effect of FSK/DEX was significantly inhibited by miR-192-5p. In the presence of circHIPK3, however, the inhibitory effect of miR-192-5p was totally lost. In summary, the present study demonstrated that circHIPK3 contributes to hyperglycemia and insulin resistance by sponging miR-192-5p and up-regulating FOXO1.
BackgroundThe uncoupling protein 1 (UCP1) gene has a role in mitochondrial energy expenditure in brown adipose tissue. This study aimed to investigate the effects of berberine, a benzylisoquinoline alkaloid used in traditional Chinese medicine, on energy expenditure, expression of the UCP1 gene, the cell stress protein inositol-requiring enzyme 1α (IRE1α), apoptosis genes, and macrophage phenotype (M1 and M2) in white and brown adipose tissue in an obese mouse model fed a high-fat diet.Material/MethodsFour-week-old C57BL/6J male mice (n=20) were divided into a high-fat diet group, a normal diet group, a group treated with berberine at 100 mg/kg/d in 0.9% normal saline, and a non-treated group. Whole-body fat mass, blood glucose, insulin resistance, and oxygen expenditure during physical activity were measured. After 16 weeks, the mice were euthanized for examination of liver and adipose tissue. The expression of pro-inflammatory cytokines, apoptosis genes, thermogenic genes (including UCP1), and IRE1α, were investigated using immunohistochemistry, Western blot, and quantitative reverse transcription polymerase chain reaction (qRT-PCR), in white and brown adipose tissue. Magnetic cell sorting harvested M1 and M2 macrophages in adipose tissue. Clodronate liposomes were used to inhibit macrophage recruitment.ResultsBerberine treatment in mice fed a high-fat diet increased energy metabolism, glucose tolerance, and expression of UCP1, and reduced expression of pro-inflammatory cytokines, macrophage recruitment, and resulted in M2 macrophage polarization in white adipose tissue. Polarized M2 macrophages showed reduced expression of apoptotic genes and IRE1α.ConclusionsBerberine improved metabolic function in a mouse model fed a high-fat diet.
Background and objectives Research suggests that diabetic peripheral neuropathy (DPN) is related to plasma fibrinogen (Fib) concentrations, although its correlation with Fib function has not been reported. Here, the k value and angle α, reflecting the plasma Fib function, were used to analyse its correlation with DPN, and their potential as biological indicators for diagnosing DPN was explored. Subjects and methods This prospective observational clinical study enrolled 561 type 2 diabetes mellitus (T2DM) patients, who were divided into the diabetes with symptomatic neuropathy (161 cases), diabetes with asymptomatic neuropathy (132 cases) and diabetes with no neuropathy (268 cases) groups. Meanwhile, 160 healthy unrelated subjects were recruited as controls. Results Fib levels increased slightly in diabetic subjects with neuropathy compared with those without. The angle α levels increased slightly in subjects with asymptomatic DPN compared with those with no neuropathy and increased greatly in subjects with symptomatic DPN compared with those without. The k value levels slightly decreased in subjects with asymptomatic DPN compared with those with no neuropathy and greatly decreased in subjects with symptomatic DPN compared with those without. The association of the k value and angle α with diabetic neuropathy was independent of the hyperglycaemic state and other potential confounders (odds ratio 0.080 [0.051–0.124], P < 0.001; odds ratio 1.131 [1.063–1.204], P < 0.001). The k value and angle α levels were closely correlated with neuropathy stage (r = − 0.686, P < 0.000; r = 0.314, P < 0.001). The optimal cut-off point for k value levels to distinguish patients with diabetic neuropathy from those without was 1.8 min, with a sensitivity of 73.7% and a specificity of 83.2% (AUC = 0.873). The optimal cut-off point for angle α levels was 60°, with a sensitivity of 41.0% and a specificity of 95.6% (AUC = 0.669). Conclusions The k value and angle α are closely associated with DPN. The levels of the k value and angle α may be helpful in the early diagnosis of DPN.
Our previous study showed that highly iodinated thyroglobulin (TG) inhibited thyroid transcription factor-1 (TTF-1) and paired box gene 8 (PAX8) expression, but the potential mechanism remains unclear. In this study, we constructed a thyroid follicle model in vitro to mimic its natural physiological structure and explored how iodinated TG in the follicular lumen tuned TTF-1 and PAX8 expression. Our data showed that lowly iodinated TG enhanced PKA activity while upregulation of both TTF-1 and PAX8 expression; and that highly iodinated TG triggered PKC activity while suppression of TTF-1 and PAX8 expression. Further, PKA agonist alone could increase TTF-1 and PAX8 expression while PKC agonist decreased TTF-1 and PAX8 level. If blocking PLC-PKC pathway using PKC-specific inhibitor, highly iodinated TG significantly promoted the expressions of TTF-1 and PAX8, and similarly PKA-specific blocker moderately inhibited TTF-1 and PAX8 expression. And opposite tendencies of TTF1 and PAX8 aberrant expression were observed in the condition of low iodinated TG when blocking PLC-PKC and cAMP-PKA signaling pathways. Our results indicated that iodinated TG manipulated TTF-1 and PAX8 expression through PLC-PKC and cAMP-PKA pathways, and highly iodinated TG played inhibitory role via PLC-PKC pathway from the TTF1 and PAX8 perspective while low level of iodinated TG was an activator through cAMP-PKA pathway. Our findings proved that iodinated TG in thyroid follicular lumen regulated TTF-1 and PAX8 expression through thyroid stimulating hormone/thyroid stimulating hormone receptor (TSH/TSHR) mediated cAMP-PKA and PLC-PKC signaling pathways. J. Cell. Biochem. 118: 3444-3451, 2017. © 2017 Wiley Periodicals, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.