With the popularity of Android applications, Android malware has an exponential growth trend. In order to detect Android malware effectively, this paper proposes a novel lightweight static detection model, TinyDroid, using instruction simplification and machine learning technique. First, a symbol-based simplification method is proposed to abstract the opcode sequence decompiled from Android Dalvik Executable files. Then, N-gram is employed to extract features from the simplified opcode sequence, and a classifier is trained for the malware detection and classification tasks. To improve the efficiency and scalability of the proposed detection model, a compression procedure is also used to reduce features and select exemplars for the malware sample dataset. TinyDroid is compared against the state-of-the-art antivirus tools in real world using Drebin dataset. The experimental results show that TinyDroid can get a higher accuracy rate and lower false alarm rate with satisfied efficiency.
With the proliferation of the Android malicious applications, malware becomes more capable of hiding or confusing its malicious intent through the use of code obfuscation, which has significantly weaken the effectiveness of the conventional defense mechanisms. Therefore, in order to effectively detect unknown malicious applications on the Android platform, we propose DroidVecDeep, an Android malware detection method using deep learning technique. First, we extract various features and rank them using Mean Decrease Impurity. Second, we transform the features into compact vectors based on word2vec. Finally, we train the classifier based on deep learning model. A comprehensive experimental study on a real sample collection was performed to compare various malware detection approaches. Experimental results demonstrate that the proposed method outperforms other Android malware detection techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.