In this article, selective laser melting (SLM) equipment is used to print 316L stainless steel parts under different process parameters, and the surface roughness of the parts is measured. Based on back propagation neural networks (BP neural networks, BPNN), the upper surface roughness prediction model is established. The laser power, scanning speed, and scanning interval are used as model input, and the surface roughness of the workpiece is output. This model can easily and quickly predict the surface roughness of SLM metal printing, with high prediction accuracy, and can provide a basis for the optimization of SLM process parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.