Due to its unique ability to reduce carbon dioxide (CO 2 ) into CO or formate at high versus low overpotentials, respectively, palladium is a promising catalyst for the electrochemical CO 2 -reduction reaction (CO 2 RR). Further improvements aim at increasing its activity and selectivity toward either of these value-added species, while reducing the amount of hydrogen produced as a side product. With this motivation, in this work, we synthesized a range of unsupported, bimetallic PdPt aerogels and pure Pt or Pd aerogels and extensively characterized them using various microscopic and spectroscopic techniques. These revealed that the aerogels' porous web consists of homogenous alloys of Pt and Pd, with palladium and platinum being present on their surface for all compositions. The subsequent determination of these aeorgels' CO 2 RR performance unveiled that the high activity of these Pt surface atoms toward hydrogen evolution causes all PdPt alloys to favor this reaction over CO 2 reduction. In the case of the pure Pd aerogel, although, its unsupported nature leads to a suppression of H 2 evolution and a concomitant increase in the selectivity toward CO when compared to a commercial, carbon-supported Pd-nanoparticle catalyst.
Background: The family with sequence similarity 83 member D (FAM83D) protein is known to play a significant role in many human diseases. However, its role in cancer remains ambiguous. This study aimed to investigate the function of FAM83D in a pan-cancer analysis, with a special focus on breast cancer.Methods: Samples were collected from The Cancer Genome Atlas (TCGA) and used for bioinformatic analysis. Datasets from the Gene Expression Omnibus (GEO) and Genotype-Tissue Expression (GTEx) databases were also analyzed for verification. The potential value of FAM83D as a prognostic and diagnostic biomarker was visualized through R software. The “survival” and “GSVA” package were used for univariate, multivariate and pathway enrichment analyseis. We further analyzed the CancerSEA databases and TISIDB websites for single-cell and immune-related profiling. Lastly, we validated those data in vitro using quantitative reverse transcriptase-polymerase chain reaction (RT‒qPCR), cell counting kit-8 (CCK-8), transwell, flow cytometry, and tumorigenicity assays in a murine cell line model.Results: The expression of FAM83D in tumor samples was significantly higher than in normal tissues for most cancer types in the datasets. We confirmed this finding using RT‒qPCR in a breast cancer cell line. Analysis of multiple datasets suggests that overall survival (OS) was extremely poor for breast cancer patients with high FAM83D expression. The CCK-8 assay demonstrated that MCF-7 cell proliferation was inhibited after genetic silencing of FAM83D. Transwell assay showed that knockdown of FAM83D significantly inhibited the invasion and migration ability of MCF-7 cells compared to the control. The results of flow cytometry showed that silencing FAM83D could block the G1 phase of MCF-7 cells compared with negative groups. The tumorigenicity assay in nude mice indicated that the tumorigenic ability to silence FAM83D decreased compared.Conclusion: Results suggest that FAM83D expression can serve as a valuable biomarker and core gene across cancer types. Furthermore, FAM83D expression is significantly associated with MCF-7 cell proliferation and thus may be a prospective prognostic biomarker especially for breast cancer.
Background: Stress granules (SGs) are the dense granules formed in the cytoplasm of eukaryotic cells in response to stress stimuli, such as endoplasmic reticulum stress, heat shock, hypoxia, and arsenate exposure. Although SGs have been attracting a lot of research attention, there is still a lack of systematic analysis of SGs in the literature. Methods: By analyzing the literature published in the Web of Science database using the R software, we extracted all the information related to SGs from the literature and cited references. The following information was included: publications per year, overall citations, top 10 countries, top 10 authors, co-author collaborations, top 10 institutions, critical areas, and top 10 cited research articles. Results: A total of 4052 articles related to SGs were selected and screened. These documents have been cited a total of 110,553 times, with an H-index of 126 and an average of 27.28 citations per article. The authors of the literature included in this study were from 89 different countries/regions. The United States and China had the highest number of publications and ranking institutions. Conclusions: This article presents essential insights on the characteristics and influence of SGs, demonstrating their indispensable role in immune regulation and other fields.
We have designed a high-speed rotating mirror isolator, which is basically contained by a rotating mirror and a spatial filter. The incident ray is reflected by the rotating mirror and scans an input lens. Only the main pulses can get through the hole at the optical focus to the output lens of the spatial filter. The optical system has been carefully designed, so the output ray from the isolator is restored and is as static as the incident ray.
During the past few years, much effort has been put into developing solid-state slab lasers. Due to a limitation of the cross area of slab laser, the output power was restricted. Using the technology of the Nd:Yglass disk laser which is often used in laser fusion systems, a 40-mm clear aperture Nd:YAG disk laser has been built in our laboratory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.