Silent Data Corruption (SDC) is a serious reliability issue in many domains, including embedded systems. However, current protection techniques are brittle, and do not allow programmers to trade o performance for SDC coverage. Further, many of them require tens of thousands of fault injection experiments, which are highly time-intensive. In this thesis, we propose two empirical models, namely SDCTune and SDCAuto, to predict the SDC proneness of a program's data. Both models are based on static and dynamic features of the program alone, and do not require fault injections to be performed. The dierence between the two models is that SDCTune is built using a manual tuning process, while SDCAuto is built using a machine learning algorithm. We then develop an algorithm using both models to selectively protect the most SDC-prone data in the program subject to a given performance overhead bound. Our results show that both models are accurate at predicting the relative SDC rate of an application. And in terms of eciency of detection (i.e., ratio of SDC coverage provided to performance overhead), our technique outperforms full duplication by a factor of 0.78x to 1.65x with SDCTune model, and 0.62x to 0.96x with SDCAuto model.
Silent Data Corruption (SDC) is a serious reliability issue in many domains, including embedded systems. However, current protection techniques are brittle, and do not allow programmers to trade off performance for SDC coverage. Further, many of them require tens of thousands of fault injection experiments, which are highly time-intensive. In this paper, we propose an empirical model to predict the SDC proneness of a program's data called SDCTune. SDCTune is based on static and dynamic features of the program alone, and does not require fault injections to be performed. We then develop an algorithm using SDCTune to selectively protect the most SDC-prone data in the program subject to a given performance overhead bound. Our results show that our technique is highly accurate at predicting the relative SDC rate of an application, and outperforms full duplication by a factor of 0.83 to 1.87x in efficiency of detection (i.e., ratio of SDC coverage provided to performance overhead).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.