Rheumatoid arthritis (RA) is an incurable systemic autoimmune disease. Disease progression leads to joint deformity and associated loss of function, which significantly impacts the quality of life for sufferers and adds to losses in the labor force. In the past few decades, RA has attracted increased attention from researchers, the abnormal signaling pathways in RA are a very important research field in the diagnosis and treatment of RA, which provides important evidence for understanding this complex disease and developing novel RA-linked intervention targets. The current review intends to provide a comprehensive overview of RA, including a general introduction to the disease, historical events, epidemiology, risk factors, and pathological process, highlight the primary research progress of the disease and various signaling pathways and molecular mechanisms, including genetic factors, epigenetic factors, summarize the most recent developments in identifying novel signaling pathways in RA and new inhibitors for treating RA. therapeutic interventions including approved drugs, clinical drugs, pre-clinical drugs, and cutting-edge therapeutic technologies. These developments will hopefully drive progress in new strategically targeted therapies and hope to provide novel ideas for RA treatment options in the future.
IntroductionMicroRNAs play a key role in neuropathic pain. In a previous study, miR-190a-5p was significantly downregulated in diabetic neuropathic pain (DNP). However, the role and pathological mechanism of miR-190a-5p in DNP still remain unclear.Materials and methodsDNP model was established. The paw withdrawal thresholds were measured to assess the mechanical nociceptive response. Dual-luciferase reporter assay was used to confirm the target gene of microRNA. The expressions of microRNA, gene, and protein were detected by the quantitative real-time polymerase chain reaction or Western blot. The levels of IL-1β and IL-6 were detected with the enzyme-linked immuno sorbent assay.ResultsCompared with the control sample, the expression of miR-190a-5p was decreased and SLC17A6 was increased in the spinal tissue from those developing DNP. The bioinformatics and luciferase reporter assay demonstrated that SLC17A6 is a direct target of miR-190a-5p. Up-regulation of miR-190a-5p and inhibition of SLC17A6 could significantly weaken the painful behavior and reduce IL-1β and IL-6 level in DNP.ConclusionmiR-190a-5p is involved in DNP via targeting SLC17A6, and miR-190a-5p and SLC17A6 may be the therapeutic targets of this disease.
Depression is a major social and health concern, and ketamine exerts a quick, remarkable and persistent anti-depressive effect. microRNAs (miRNAs) show remarkable potential in the treatment of clinical depression. Here, we determined the expression profile of miRNAs in the hippocampus of rats treated with ketamine (15 mg/kg). The results suggest that multiple miRNAs were aberrantly expressed in rat hippocampus after ketamine injection (18 miRNAs were significantly reduced, while 22 miRNAs were significantly increased). Among them, miR-206 was down-regulated in ketamine-treated rats. In both cultured neuronal cells in vitro and hippocampus in vivo, we identified that the brain-derived neurotrophic factor (BDNF) was a direct target gene of miR-206. Via this target gene, miR-206 strongly modulated the expression of BDNF. Moreover, overexpression of miR-206 significantly attenuated ketamine-induced up-regulation of BDNF. The results indicated that miRNA-206 was involved in novel therapeutic targets for the anti-depressive effect of ketamine.
A novel composite of vinyl group functionalized multiwalled carbon nanotubes (MWCNTs) molecularly imprinted polymer (MIP) was synthesized and applied as a molecular recognition element to construct an electrochemical sensor for parathion-methyl in this paper. The special molecular recognition properties of parathion-methyl mainly dominated by π-π, p-π interaction and hydrogen bonding formed among functional monomer, template and matrix. A series of electrochemical experiment results proved that the prepared material had good adsorption capacity and fast mass transfer rate to parathion-methyl. The good selectivity of the sensor allowed fine discrimination between parathion and paraoxon, which had similar structures to parathion-methyl. The response of the MIPs was linearly proportional to the concentration of parathion-methyl over the range of 2.0 × 10(-7) to 1.0 × 10(-5) mol L(-1) with a lower detection limit of 6.7 × 10(-8) mol L(-1) (S/N = 3). This sensor was also applied in the detection of parathion-methyl in pear and cucumber with average recoveries of between 94.9% and 106.2% (RSD < 5%) being obtained. The results mentioned above show that the novel electrochemical sensor is an ideal device for the real-time determination of parathion-methyl in real samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.