Pools of human adipose-derived adult stem (hADAS) cells can exhibit multiple differentiated phenotypes under appropriate in vitro culture conditions. Because adipose tissue is abundant and easily accessible, hADAS cells offer a promising source of cells for tissue engineering and other cell-based therapies. However, it is unclear whether individual hADAS cells can give rise to multiple differentiated phenotypes or whether each phenotype arises from a subset of committed progenitor cells that exists within a heterogeneous population. The goal of this study was to test the hypothesis that single hADAS are multipotent at a clonal level. hADAS cells were isolated from liposuction waste, and ring cloning was performed to select cells derived from a single progenitor cell. Forty-five clones were expanded through four passages and then induced for adipogenesis, osteogenesis, chondrogenesis, and neurogenesis using lineage-specific differentiation media. Quantitative differentiation criteria for each lineage were determined using histological and biochemical analyses. Eighty one percent of the hADAS cell clones differentiated into at least one of the lineages. In addition, 52% of the hADAS cell clones differentiated into two or more of the lineages. More clones expressed phenotypes of osteoblasts (48%), chondrocytes (43%), and neuron-like cells (52%) than of adipocytes (12%), possibly due to the loss of adipogenic ability after repeated subcultures. The findings are consistent with the hypothesis that hADAS cells are a type of multipotent adult stem cell and not solely a mixed population of unipotent progenitor cells. However, it is important to exercise caution in interpreting these results until they are validated using functional in vivo assays.
The receptor tyrosine kinase rearranged during transfection (RET) is an oncogenic driver activated in multiple cancers, including non-small cell lung cancer (NSCLC), medullary thyroid cancer (MTC), and papillary thyroid cancer. No approved therapies have been designed to target RET; treatment has been limited to multikinase inhibitors (MKI), which can have significant off-target toxicities and limited efficacy. BLU-667 is a highly potent and selective RET inhibitor designed to overcome these limitations. , BLU-667 demonstrated ≥10-fold increased potency over approved MKIs against oncogenic RET variants and resistance mutants., BLU-667 potently inhibited growth of NSCLC and thyroid cancer xenografts driven by various mutations and fusions without inhibiting VEGFR2. In first-in-human testing, BLU-667 significantly inhibited RET signaling and induced durable clinical responses in patients with-altered NSCLC and MTC without notable off-target toxicity, providing clinical validation for selective RET targeting. Patients with -driven cancers derive limited benefit from available MKIs. BLU-667 is a potent and selective RET inhibitor that induces tumor regression in cancer models with mutations and fusions. BLU-667 attenuated RET signaling and produced durable clinical responses in patients with -altered tumors, clinically validating selective RET targeting..
Severe hemolytic anemia in Basenji dogs secondary to pyruvate kinase (PK) deficiency can be corrected by marrow allografts from healthy littermates after a conventional high-dose myeloablative conditioning regimen. The nonmyeloablative conditioning regimen used here, which consisted of a sublethal dose of 200 cGy total body irradiation before and immunosuppression with mycophenolate mofetil and cyclosporine after a dog leukocyte antigen (DLA)-identical littermate allograft, has been found to be effective in establishing stable mixed donor/host hematopoietic chimerism in normal dogs. We explored the feasibility of nonmyeloablative marrow allografts for the treatment of canine PK deficiency and studied the effect of stable allogeneic mixed hematopoietic chimerism on the natural course of the disease. Five affected dogs received transplants, of which 3 dogs had advanced liver cirrhosis and myelofibrosis. Both complications were presumed to be due to iron overload. All 5 dogs showed initial engraftment. Two rejected their grafts after 6 weeks but survived with completeautologous marrow recovery and return of the disease. One died from liver failure on day 27 with 60% donor engraftment. Two dogs have shown sustained mixed donor/host chimerism for more than a year with 85% and 12% donor hematopoietic cells, respectively. Overall clinical response correlated with the degree of donor chimerism. The dog with the low degree of chimerism achieved partial resolution of hemolysis, but the disease symptoms persisted as manifested by increasing iron overload resulting in progression of marrow and liver fibrosis. The dog with the high degree of donor chimerism achieved almost complete resolution of hemolysis with a decrease of marrow iron content and resolution of marrow fibrosis. These observations suggest that mixed hematopoietic chimerism can be relatively safely established in dogs with PK deficiency even in the presence of advanced liver cirrhosis. However, although effective in correcting or delaying the development of myelofibrosis, a low degree of mixed chimerism was not sufficient to prevent continued hemolysis of red blood cells of host origin. Complete donor chimerism appears necessary to achieve a long-term cure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.