Background Patients with advanced squamous-cell non–small-cell lung cancer (NSCLC) who have disease progression during or after first-line chemotherapy have limited treatment options. This randomized, open-label, international, phase 3 study evaluated the efficacy and safety of nivolumab, a fully human IgG4 programmed death 1 (PD-1) immune-checkpoint–inhibitor antibody, as compared with docetaxel in this patient population. Methods We randomly assigned 272 patients to receive nivolumab, at a dose of 3 mg per kilogram of body weight every 2 weeks, or docetaxel, at a dose of 75 mg per square meter of body-surface area every 3 weeks. The primary end point was overall survival. Results The median overall survival was 9.2 months (95% confidence interval [CI], 7.3 to 13.3) with nivolumab versus 6.0 months (95% CI, 5.1 to 7.3) with docetaxel. The risk of death was 41% lower with nivolumab than with docetaxel (hazard ratio, 0.59; 95% CI, 0.44 to 0.79; P<0.001). At 1 year, the overall survival rate was 42% (95% CI, 34 to 50) with nivolumab versus 24% (95% CI, 17 to 31) with docetaxel. The response rate was 20% with nivolumab versus 9% with docetaxel (P = 0.008). The median progression-free survival was 3.5 months with nivolumab versus 2.8 months with docetaxel (hazard ratio for death or disease progression, 0.62; 95% CI, 0.47 to 0.81; P<0.001). The expression of the PD-1 ligand (PD-L1) was neither prognostic nor predictive of benefit. Treatment-related adverse events of grade 3 or 4 were reported in 7% of the patients in the nivolumab group as compared with 55% of those in the docetaxel group. Conclusions Among patients with advanced, previously treated squamous-cell NSCLC, overall survival, response rate, and progression-free survival were significantly better with nivolumab than with docetaxel, regardless of PD-L1 expression level. (Funded by Bristol-Myers Squibb; CheckMate 017 ClinicalTrials.gov number, NCT01642004.)
Background Data on patients with COVID-19 who have cancer are lacking. Here we characterise the outcomes of a cohort of patients with cancer and COVID-19 and identify potential prognostic factors for mortality and severe illness.Methods In this cohort study, we collected de-identified data on patients with active or previous malignancy, aged 18 years and older, with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection from the USA, Canada, and Spain from the COVID-19 and Cancer Consortium (CCC19) database for whom baseline data were added between March 17 and April 16, 2020. We collected data on baseline clinical conditions, medications, cancer diagnosis and treatment, and COVID-19 disease course. The primary endpoint was all-cause mortality within 30 days of diagnosis of COVID-19. We assessed the association between the outcome and potential prognostic variables using logistic regression analyses, partially adjusted for age, sex, smoking status, and obesity. This study is registered with ClinicalTrials.gov, NCT04354701, and is ongoing. FindingsOf 1035 records entered into the CCC19 database during the study period, 928 patients met inclusion criteria for our analysis. Median age was 66 years (IQR 57-76), 279 (30%) were aged 75 years or older, and 468 (50%) patients were male. The most prevalent malignancies were breast (191 [21%]) and prostate (152 [16%]). 366 (39%) patients were on active anticancer treatment, and 396 (43%) had active (measurable) cancer. At analysis (May 7, 2020), 121 (13%) patients had died. In logistic regression analysis, independent factors associated with increased 30-day mortality, after partial adjustment, were: increased age (per 10 years; partially adjusted odds ratio 1•84, 95% CI 1•53-2•21), male sex (1•63, 1•07-2•48), smoking status (former smoker vs never smoked: 1•60, 1•03-2•47), number of comorbidities (two vs none: 4•50, 1•33-15•28), Eastern Cooperative Oncology Group performance status of 2 or higher (status of 2 vs 0 or 1: 3•89, 2•11-7•18), active cancer (progressing vs remission: 5•20, 2•77-9•77), and receipt of azithromycin plus hydroxychloroquine (vs treatment with neither: 2•93, 1•79-4•79; confounding by indication cannot be excluded). Compared with residence in the US-Northeast, residence in Canada (0•24, 0•07-0•84) or the US-Midwest (0•50, 0•28-0•90) were associated with decreased 30-day all-cause mortality. Race and ethnicity, obesity status, cancer type, type of anticancer therapy, and recent surgery were not associated with mortality. Interpretation Among patients with cancer and COVID-19, 30-day all-cause mortality was high and associated with general risk factors and risk factors unique to patients with cancer. Longer follow-up is needed to better understand the effect of COVID-19 on outcomes in patients with cancer, including the ability to continue specific cancer treatments.
Purpose Treatment of advanced non-small-cell lung cancer with immune checkpoint inhibitors (ICIs) is characterized by durable responses and improved survival in a subset of patients. Clinically available tools to optimize use of ICIs and understand the molecular determinants of response are needed. Targeted next-generation sequencing (NGS) is increasingly routine, but its role in identifying predictors of response to ICIs is not known. Methods Detailed clinical annotation and response data were collected for patients with advanced non-small-cell lung cancer treated with anti-programmed death-1 or anti-programmed death-ligand 1 [anti-programmed cell death (PD)-1] therapy and profiled by targeted NGS (MSK-IMPACT; n = 240). Efficacy was assessed by Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1, and durable clinical benefit (DCB) was defined as partial response/stable disease that lasted > 6 months. Tumor mutation burden (TMB), fraction of copy number-altered genome, and gene alterations were compared among patients with DCB and no durable benefit (NDB). Whole-exome sequencing (WES) was performed for 49 patients to compare quantification of TMB by targeted NGS versus WES. Results Estimates of TMB by targeted NGS correlated well with WES (ρ = 0.86; P < .001). TMB was greater in patients with DCB than with NDB ( P = .006). DCB was more common, and progression-free survival was longer in patients at increasing thresholds above versus below the 50th percentile of TMB (38.6% v 25.1%; P < .001; hazard ratio, 1.38; P = .024). The fraction of copy number-altered genome was highest in those with NDB. Variants in EGFR and STK11 associated with a lack of benefit. TMB and PD-L1 expression were independent variables, and a composite of TMB plus PD-L1 further enriched for benefit to ICIs. Conclusion Targeted NGS accurately estimates TMB and elevated TMB further improved likelihood of benefit to ICIs. TMB did not correlate with PD-L1 expression; both variables had similar predictive capacity. The incorporation of both TMB and PD-L1 expression into multivariable predictive models should result in greater predictive power.
is the most common oncogenic driver in lung adenocarcinoma (LUAC). We previously reported that (KL) or (KP) comutations define distinct subgroups of -mutant LUAC. Here, we examine the efficacy of PD-1 inhibitors in these subgroups. Objective response rates to PD-1 blockade differed significantly among KL (7.4%), KP (35.7%), and K-only (28.6%) subgroups ( < 0.001) in the Stand Up To Cancer (SU2C) cohort (174 patients) with -mutant LUAC and in patients treated with nivolumab in the CheckMate-057 phase III trial (0% vs. 57.1% vs. 18.2%; = 0.047). In the SU2C cohort, KL LUAC exhibited shorter progression-free ( < 0.001) and overall ( = 0.0015) survival compared with ; LUAC. Among 924 LUACs, alterations were the only marker significantly associated with PD-L1 negativity in TMB LUAC. The impact of alterations on clinical outcomes with PD-1/PD-L1 inhibitors extended to PD-L1-positive non-small cell lung cancer. In-mutant murine LUAC models, loss promoted PD-1/PD-L1 inhibitor resistance, suggesting a causal role. Our results identify alterations as a major driver of primary resistance to PD-1 blockade in -mutant LUAC. This work identifies alterations as the most prevalent genomic driver of primary resistance to PD-1 axis inhibitors in-mutant lung adenocarcinoma. Genomic profiling may enhance the predictive utility of PD-L1 expression and tumor mutation burden and facilitate establishment of personalized combination immunotherapy approaches for genomically defined LUAC subsets. .
Advanced, anaplastic lymphoma kinase (ALK)-positive lung cancer is currently treated with the first-generation ALK inhibitor crizotinib followed by more potent, second-generation ALK inhibitors (e.g., ceritinib, alectinib) upon progression. Second-generation inhibitors are generally effective even in the absence of crizotinib-resistant ALK mutations, likely reflecting incomplete inhibition of ALK by crizotinib in many cases. Herein, we analyzed 103 repeat biopsies from ALK-positive patients progressing on various ALK inhibitors. We find that each ALK inhibitor is associated with a distinct spectrum of ALK resistance mutations and that the frequency of one mutation - ALK G1202R - increases significantly after treatment with second-generation agents. To investigate strategies to overcome resistance to second-generation ALK inhibitors, we examine the activity of the third-generation ALK inhibitor lorlatinib in a series of ceritinib-resistant, patient-derived cell lines, and observe that the presence of ALK resistance mutations is highly predictive for sensitivity to lorlatinib, whereas those cell lines without ALK mutations are resistant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.