Because of the uncertainty of weather and the complexity of atmospheric movement, extreme weather has always been an important and difficult meteorological problem. Extreme weather events can be called high-impact weather, the ‘extreme’ here means that the probability of occurrence is very small. Deep learning can automatically learn and train from a large number of sample data to obtain excellent feature expression, which effectively improves the performance of various machine learning tasks and is widely used in computer vision, natural language processing, and other fields. Based on the introduction of deep learning, this article makes a preliminary summary of the existing extreme weather prediction methods. These include the ability to use recurrent neural networks to predict weather phenomena and convolutional neural networks to predict the weather. They can automatically extract image features of extreme weather phenomena and predict the possibility of extreme weather somewhere by using a deep learning framework.
Precipitation nowcasting is of great significance for severe convective weather warnings. Radar echo extrapolation is a commonly used precipitation nowcasting method. However, the traditional radar echo extrapolation methods are encountered with the dilemma of low prediction accuracy and extrapolation ambiguity. The reason is that those methods cannot retain important long-term information and fail to capture short-term motion information from the long-range data stream. In order to solve the above problems, we select the spatiotemporal long short-term memory (ST-LSTM) as the recurrent unit of the model and integrate the 3D convolution operation in it to strengthen the model's ability to capture short-term motion information which plays a vital role in the prediction of radar echo motion trends. For the purpose of enhancing the model's ability to retain long-term important information, we also introduce the channel attention mechanism to achieve this goal. In the experiment, the training and testing datasets are constructed using radar data of Shanghai, we compare our model with three benchmark models under the reflectance thresholds of 15 and 25. Experimental results demonstrate that the proposed model outperforms the three benchmark models in radar echo extrapolation task, which obtains a higher accuracy rate and improves the clarity of the extrapolated image.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.