2021
DOI: 10.3390/atmos12060661
|View full text |Cite
|
Sign up to set email alerts
|

Survey on the Application of Deep Learning in Extreme Weather Prediction

Abstract: Because of the uncertainty of weather and the complexity of atmospheric movement, extreme weather has always been an important and difficult meteorological problem. Extreme weather events can be called high-impact weather, the ‘extreme’ here means that the probability of occurrence is very small. Deep learning can automatically learn and train from a large number of sample data to obtain excellent feature expression, which effectively improves the performance of various machine learning tasks and is widely use… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
9
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
7
2
1

Relationship

0
10

Authors

Journals

citations
Cited by 32 publications
(10 citation statements)
references
References 33 publications
0
9
0
1
Order By: Relevance
“…Tidak hanya model berbasis peubah, tetapi model klasik dan model kontemporer juga telah dilakukan oleh ahli dalam bidang peramalan (forecasting). Beberapa penelitian terkait diantaranya Fang, et al [5] menunjukkan bahwa prediksi cuaca ekstrim di China dengan pendekatan algoritma deep learning yakni Recurrent Neural Network (RNN), Backpropogation Neural Network (BPNN), Convolutional Neural Network (CNN) memberikan tingkat akurasi yang cukup tinggi dibandingkan dengan metode pemetaan. Han, et al [6] memprediksi data cuaca dari stasiun Harvard Graduate School of Design (GSD) menggunakan algoritma RNN dengan tingkat akurasi yang cukup tinggi dibandingkan dengan model seperti BNN dan NN.…”
Section: Pendahuluanunclassified
“…Tidak hanya model berbasis peubah, tetapi model klasik dan model kontemporer juga telah dilakukan oleh ahli dalam bidang peramalan (forecasting). Beberapa penelitian terkait diantaranya Fang, et al [5] menunjukkan bahwa prediksi cuaca ekstrim di China dengan pendekatan algoritma deep learning yakni Recurrent Neural Network (RNN), Backpropogation Neural Network (BPNN), Convolutional Neural Network (CNN) memberikan tingkat akurasi yang cukup tinggi dibandingkan dengan metode pemetaan. Han, et al [6] memprediksi data cuaca dari stasiun Harvard Graduate School of Design (GSD) menggunakan algoritma RNN dengan tingkat akurasi yang cukup tinggi dibandingkan dengan model seperti BNN dan NN.…”
Section: Pendahuluanunclassified
“…While they presented the challenges regarding available data, they also reviewed papers that forecast weather parameters. Fang et al (2021a) narrowed down the focus to only cover studies that tackled the prediction of extreme weather events, meaning the prediction of rare climate occurrences.…”
Section: Review Papersmentioning
confidence: 99%
“…In the actual training, we select ϵ = 0.1 σ as our choice, because of the observation that the relative error of the model's predictions for extreme values is often below 10% (Bellprat & Doblas-Reyes, 2016) (Fang et al, 2021). Therefore it is sufficient to consider an error margin of 10%.…”
Section: A1 Analysis Of the Optimization Objectivementioning
confidence: 99%