Background There are more than 6000 rare diseases in existence today, with the number of patients with these conditions rapidly increasing. Most research to date has focused on the diagnosis, treatment, and development of orphan drugs, while few studies have examined the topics and emotions expressed by patients living with rare diseases on social media platforms, especially in online health communities (OHCs). Objective This study aimed to determine the topic categorizations and sentiment polarity for albinism in a Chinese OHC, Baidu Tieba, using multiple methods. The OHC was deeply mined using topic mining, social network analysis, and sentiment polarity analysis. Through these methods, we determined the current situation of community construction, identifying the ongoing needs and problems experienced by people with albinism in their daily lives. Methods We used the albinism community on the Baidu Tieba platform as the data source in this study. Term frequency–inverse document frequency, latent dirichlet allocation models, and naive Bayes were employed to mine the various topic categories. Social network analysis, which was completed using the Gephi tool, was employed to analyze the evolution of the albinism community. Sentiment polarity analysis was performed using a long short-term memory algorithm. Results We identified 8 main topics discussed in the community: daily sharing, family, interpersonal communication, social life and security, medical care, occupation and education, beauty, and self-care. Among these topics, daily sharing represented the largest proportion of the discussions. From 2012 to 2019, the average degree and clustering coefficient of the albinism community continued to decline, while the network center transferred from core communities to core users. A total of 68.43% of the corpus was emotional, with 35.88% being positive and 32.55% negative. There were statistically significant differences in the distribution of sentiment polarity between topics (P<.001). Negative emotions were twice as high as positive emotions in the social life and security topic. Conclusions The study reveals insights into the emotions expressed by people with albinism in the Chinese OHC, Baidu Tieba, providing health care practitioners with greater appreciation of the current emotional support needed by patients and the patient experience. Current OHCs do not exert enough influence due to limited effective organization and development. Health care sectors should take greater advantage of OHCs to support vulnerable patients with rare diseases to meet their evidence-based needs.
Since the early 2000s, information systems have been widely employed across hospitals in China, changing the way in which processes are managed, improving customer satisfaction and strengthening business competence. Intelligent Guidance Systems for Patients (IGSP), which resemble humanoid characteristics using Artificial Intelligence (AI), assist patients in wayfinding, obtaining medical guidance, consultations, and other medical services, and can improve user experiences before, during and after hospital visits. However, despite their widespread adoption, usability studies on such systems are scarce. To date, there is no practical or standardized measurement for system usability, leading to difficult inspection, maintenance and servicing processes. This study aims to determine the usability deficiency of IGSP and understand how various factors influence user satisfaction during their use. We employ the requirements set out in the ISO9241-11:2018 standard, using two inspection methods with 3 experts and 346 valid end-users. First, a Heuristic evaluation method was employed to detect usability problems and to demonstrate violations of Nielsen's 10 heuristic principles. Second, a System Usability Scale (SUS) was applied to evaluate participants' satisfaction towards IGSP.Finally, analysis of variance tests and a multiple linear regression analysis was performed to establish correlations between user satisfaction and characteristics.
BACKGROUND There are more than 6000 rare diseases in existence today, with the number of patients with these conditions rapidly increasing. Most research to date has focused on the diagnosis, treatment, and development of orphan drugs, while few studies have examined the topics and emotions expressed by patients living with rare diseases on social media platforms, especially in online health communities (OHCs). OBJECTIVE This study aimed to determine the topic categorizations and sentiment polarity for albinism in a Chinese OHC, Baidu Tieba, using multiple methods. The OHC was deeply mined using topic mining, social network analysis, and sentiment polarity analysis. Through these methods, we determined the current situation of community construction, identifying the ongoing needs and problems experienced by people with albinism in their daily lives. METHODS We used the albinism community on the Baidu Tieba platform as the data source in this study. Term frequency–inverse document frequency, latent dirichlet allocation models, and naive Bayes were employed to mine the various topic categories. Social network analysis, which was completed using the Gephi tool, was employed to analyze the evolution of the albinism community. Sentiment polarity analysis was performed using a long short-term memory algorithm. RESULTS We identified 8 main topics discussed in the community: daily sharing, family, interpersonal communication, social life and security, medical care, occupation and education, beauty, and self-care. Among these topics, daily sharing represented the largest proportion of the discussions. From 2012 to 2019, the average degree and clustering coefficient of the albinism community continued to decline, while the network center transferred from core communities to core users. A total of 68.43% of the corpus was emotional, with 35.88% being positive and 32.55% negative. There were statistically significant differences in the distribution of sentiment polarity between topics (<i>P</i><.001). Negative emotions were twice as high as positive emotions in the social life and security topic. CONCLUSIONS The study reveals insights into the emotions expressed by people with albinism in the Chinese OHC, Baidu Tieba, providing health care practitioners with greater appreciation of the current emotional support needed by patients and the patient experience. Current OHCs do not exert enough influence due to limited effective organization and development. Health care sectors should take greater advantage of OHCs to support vulnerable patients with rare diseases to meet their evidence-based needs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.