Chanting and praying are among the most popular religious activities, which are said to be able to alleviate people’s negative emotions. However, the neural mechanisms underlying this mental exercise and its temporal course have hardly been investigated. Here, we used event-related potentials (ERPs) to explore the effects of chanting the name of a Buddha (Amitābha) on the brain’s response to viewing negative pictures that were fear- and stress-provoking. We recorded and analyzed electroencephalography (EEG) data from 21 Buddhists with chanting experience as they viewed negative and neutral pictures. Participants were instructed to chant the names of Amitābha or Santa Claus silently to themselves or simply remain silent (no-chanting condition) during picture viewing. To measure the physiological changes corresponding to negative emotions, electrocardiogram and galvanic skin response data were also collected. Results showed that viewing negative pictures (vs. neutral pictures) increased the amplitude of the N1 component in all the chanting conditions. The amplitude of late positive potential (LPP) also increased when the negative pictures were viewed under the no-chanting and the Santa Claus condition. However, increased LPP was not observed when chanting Amitābha. The ERP source analysis confirmed this finding and showed that increased LPP mainly originated from the central-parietal regions of the brain. In addition, the participants’ heart rates decreased significantly when viewing negative pictures in the Santa Claus condition. The no-chanting condition had a similar decreasing trend although not significant. However, while chanting Amitābha and viewing negative pictures participants’ heart rate did not differ significantly from that observed during neutral picture viewing. It is possible that the chanting of Amitābha might have helped the participants to develop a religious schema and neutralized the effect of the negative stimuli. These findings echo similar research findings on Christian religious practices and brain responses to negative stimuli. Hence, prayer/religious practices may have cross-cultural universality in emotion regulation. This study shows for the first time that Buddhist chanting, or in a broader sense, repetition of religious prayers will not modulate brain responses to negative stimuli during the early perceptual stage, but only during the late-stage emotional/cognitive processing.
Electroencephalography (EEG) microstate analysis is a powerful tool to study the spatial and temporal dynamics of human brain activity, through analyzing the quasi-stable states in EEG signals. However, current studies mainly focus on rest-state EEG recordings, microstate analysis for the recording of EEG signals during naturalistic tasks is limited. It remains an open question whether current topographical clustering strategies for rest-state microstate analysis could be directly applied to task-state EEG data under the natural and dynamic conditions and whether stable and reliable results could still be achieved. It is necessary to answer the question and explore whether the topographical clustering strategies would affect the performance of microstate detection in task-state EEG microstate analysis. If it exists differences in microstate detection performance when different topographical clustering strategies are adopted, then we want to know how the alternations of the topographical clustering strategies are associated with the naturalistic task. To answer these questions, we work on a public emotion database using naturalistic and dynamic music videos as the stimulation to evaluate the effects of different topographical clustering strategies for task-state EEG microstate analysis. The performance results are systematically examined and compared in terms of microstate quality, task efficacy, and computational efficiency, and the impact of topographical clustering strategies on microstate analysis for naturalistic task data is discussed. The results reveal that a single-trial-based bottom-up topographical clustering strategy (bottom-up) achieves comparable results with the task-driven-based top-down topographical clustering (top-down). It suggests that, when task information is unknown, the single-trial-based topographical clustering could be a good choice for microstate analysis and neural activity study on naturalistic EEG data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.