AbstractDeep-learning (DL) network has emerged as an important prototyping technology for the advancements of big data analytics, intelligent systems, biochemistry, physics, and nanoscience. Here, we used a DL model whose key algorithm relies on deep neural network to efficiently predict circular dichroism (CD) response in higher-order diffracted beams of two-dimensional chiral metamaterials with different parameters. To facilitate the training process of DL network in predicting chiroptical response, the traditional rigorous coupled wave analysis (RCWA) method is utilized. Notably, these T-like shaped chiral metamaterials all exhibit the strongest CD response in the third-order diffracted beams whose intensities are the smallest, when comparing up to four diffraction orders. Our comprehensive results reveal that by means of DL network, the complex and nonintuitive relations between T-like metamaterials with different chiral parameters (i. e., unit period, width, bridge length, and separation length) and their CD performances are acquired, which owns an ultrafast computational speed that is four orders of magnitude faster than RCWA and a high accuracy. The insights gained from this study may be of assistance to the applications of DL network in investigating different optical chirality in low-dimensional metamaterials and expediting the design and optimization processes for hyper-sensitive ultrathin devices and systems.
Fixed-time synchronization of complex dynamical networks with impulsive effects is investigated in this paper. First of all, a novel lemma about the fixed-time stability of the impulsive dynamical system is proposed, in which the settling time is regardless of the initial values of the considered system. Secondly, by constructing a Lyapunov function made up of the error states' 1-norm, we design a unified controller for the network to achieve synchronization within the settling time. Moreover, the convergence time given in this paper is more accurate than that in some existing literatures. Furthermore, the nonlinear term of the dynamical behavior is assumed to be Hölder continuous, which is more general than the common Lipschitz condition. Finally, a numerical example is provided to illustrate the correctness and the effectiveness of the main result. INDEX TERMS Fixed-time synchronization, complex dynamical networks, impulsive effects, control.
Recently, convolutional neural network (CNN) has led to significant improvement in the field of computer vision, especially the improvement of the accuracy and speed of semantic segmentation tasks, which greatly improved robot scene perception. In this article, we propose a multilevel feature fusion dilated convolution network (Refine-DeepLab). By improving the space pyramid pooling structure, we propose a multiscale hybrid dilated convolution module, which captures the rich context information and effectively alleviates the contradiction between the receptive field size and the dilated convolution operation. At the same time, the high-level semantic information and low-level semantic information obtained through multi-level and multi-scale feature extraction can effectively improve the capture of global information and improve the performance of large-scale target segmentation. The encoder–decoder gradually recovers spatial information while capturing high-level semantic information, resulting in sharper object boundaries. Extensive experiments verify the effectiveness of our proposed Refine-DeepLab model, evaluate our approaches thoroughly on the PASCAL VOC 2012 data set without MS COCO data set pretraining, and achieve a state-of-art result of 81.73% mean interaction-over-union in the validate set.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.