Realizing van der Waals (vdW) epitaxy in the 80's represents a breakthrough that circumvents the stringent lattice matching and processing compatibility requirements in conventional covalent heteroepitaxy. However, due to the weak vdW interactions, there is little control over film qualities by the substrate. Typically, discrete domains with a spread of misorientation angles are formed, limiting the applicability of vdW epitaxy. Here we report the epitaxial growth of monocrystalline, covalent Cr5Te8 2D crystals on monolayer vdW WSe2 by chemical vapor deposition, driven by interfacial dative bond formation. The lattice of Cr5Te8, with a lateral dimension of a few ten microns, is fully commensurate with that of WSe2 via 3 × 3 (Cr5Te8)/7 × 7 (WSe2) supercell matching, forming a single-crystalline moiré superlattice. Our work has established a conceptually distinct paradigm of thin film epitaxy termed "dative epitaxy", which takes full advantage of covalent epitaxy with chemical bonding for fixing the atomic registry and crystal orientation, while circumventing its stringent lattice matching and processing compatibility requirements; conversely, it ensures the full flexibility of vdW epitaxy, while avoiding its poor orientation control. Cr5Te8 2D crystals grown by dative epitaxy exhibit square magnetic hysteresis, suggesting minimized interfacial defects that can serve as pinning sites.
Two-dimensional (2D) transition metal dihalides (TMDHs) have been receiving extensive attention due to their diversified magnetic properties and promising applications in spintronics. However, controlled growth of 2D TMDHs remains challenging owing to their extreme sensitivity to atmospheric moisture. Herein, using a home-built nitrogen-filled interconnected glovebox system, a universal chemical vapor deposition synthesis route of high-quality 2D TMDH flakes (1T-FeCl 2 , FeBr 2 , VCl 2 , and VBr 2 ) by reduction of their trihalide counterparts is developed. Representatively, ultrathin (∼8.6 nm) FeCl 2 flakes are synthesized on SiO 2 /Si, while on graphene/Cu foil the thickness can be down to monolayer (1L). Reflective magnetic circular dichroism spectroscopy shows an interlayer antiferromagnetic ordering of FeCl 2 with a Neel temperature at ∼17 K. Scanning tunneling microscopy and spectroscopy further identify the atomic-scale structures and band features of 1L and bilayer FeCl 2 on graphene/Cu foil.
Emerging functionalities in two-dimensional materials, such as ferromagnetism, superconductivity and ferroelectricity, open new avenues for promising nanoelectronic applications. Here, we report the discovery of intrinsic in-plane room-temperature ferroelectricity in two-dimensional Bi2TeO5 grown by chemical vapor deposition, where spontaneous polarization originates from Bi column displacements. We found an intercalated buffer layer consist of mixed Bi/Te column as 180° domain wall which enables facile polarized domain engineering, including continuously tunable domain width by pinning different concentration of buffer layers, and even ferroelectric-antiferroelectric phase transition when the polarization unit is pinned down to single atomic column. More interestingly, the intercalated Bi/Te buffer layer can interconvert to polarized Bi columns which end up with series terraced domain walls and unusual fan-shaped ferroelectric domain. The buffer layer induced size and shape tunable ferroelectric domain in two-dimensional Bi2TeO5 offer insights into the manipulation of functionalities in van der Waals materials for future nanoelectronics.
Researchers have shown great interest in two-dimensional crystals recently, because of their thickness-dependent electronic and optical properties. We have investigated the Raman and photoluminescence spectra of free-standing monolayer and bilayer MoS2, as a function of pressure. As the enforcement of layer interaction, an electronic and a crystal phase transition were revealed at ∼6 GPa and ∼16 GPa, respectively, in bilayer MoS2, while no phase transition in the monolayer is observed. The electronic phase transition at ∼6 GPa is supposed to be a direct interband changing to an indirect Λ-K interband transition, and the new structure shown at ∼16 GPa is not metallized and supposed to be a transformation from stacking faults due to layer sliding like 2Hc to 2Ha. The different pressure-induced features of monolayer MoS2, compared with bilayer MoS2, can help to get a better understanding about the importance of interlayer interaction on modifying the optical properties of MoS2 and other fundamental understanding of 2D materials.
Monolayer transition‐metal dichalcogenides, e.g., MoS 2 , typically have high intrinsic strength and Young's modulus, but low fracture toughness. Under high stress, brittle fracture occurs followed by cleavage along a preferential lattice direction, leading to catastrophic failure. Defects have been reported to modulate the fracture behavior, but pertinent atomic mechanism still remains elusive. Here, sulfur (S) and MoS n point defects are selectively created in monolayer MoS 2 using helium‐ and gallium‐ion‐beam lithography, both of which reduce the stiffness of the monolayer, but enhance its fracture toughness. By monitoring the atomic structure of the cracks before and after the loading fracture, distinct atomic structures of the cracks and fracture behaviors are found in the two types of defect‐containing monolayer MoS 2 . Combined with molecular dynamics simulations, the key role of individual S and MoS n point defects is identified in the fracture process and the origin of the enhanced fracture toughness is elucidated. It is a synergistic effect of defect‐induced deflection and bifurcation of cracks that enhance the energy release rate, and the formation of widen crack tip when fusing with point defects that prevents the crack propagation. The findings of this study provide insights into defect engineering and flexible device applications of monolayer MoS 2 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.