Glioblastoma is the most common and aggressive brain tumor and it is characterized by a high mortality rate. Temozolomide (TMZ) is an effective chemotherapy drug for glioblastoma, but the resistance to TMZ has come to represent a major clinical problem, and its underlying mechanism has yet to be elucidated. In the present study, the role of exosomal connexin 43 (Cx43) in the resistance of glioma cells to TMZ and cell migration was investigated. First, higher expression levels of Cx43 were detected in TMZ-resistant U251 (U251r) cells compared with those in TMZ-sensitive (U251s) cells. Exosomes from U251s or U251r cells (sExo and rExo, respectively) were isolated. It was found that the expression of Cx43 in rExo was notably higher compared with that in sExo, whereas treatment with rExo increased the expression of Cx43 in U251s cells. Additionally, exosomes stained with dioctadecyloxacarbocyanine (Dio) were used to visualized exosome uptake by glioma cells. It was observed that the uptake of Dio-stained rExo in U251s cells was more prominent compared with that of Dio-stained sExo, while 37,43 Gap27, a gap junction mimetic peptide directed against Cx43, alleviated the rExo uptake by cells. Moreover, rExo increased the IC 50 of U251s to TMZ, colony formation and Bcl-2 expression, but decreased Bax and cleaved caspase-3 expression in U251s cells. 37,43 Gap27 efficiently inhibited these effects of rExo on U251s cells. Finally, the results of the wound healing and Transwell assays revealed that rExo significantly enhanced the migration of U251s cells, whereas 37,43 Gap27 significantly attenuated rExo-induced cell migration. Taken together, these results indicate the crucial role of exosomal Cx43 in chemotherapy resistance and migration of glioma cells, and suggest that Cx43 may hold promise as a therapeutic target for glioblastoma in the future.
Metabolic stress (for example, low pO 2 , low pH) stimulates cancer progression in a complex and largely unresolved manner. Excessive inorganic phosphate burden is being considered as another stimulator, until now there is no well-designed study to examine the potential benefits of reducing phosphate burden on cancer progression. Sevelamer microspheres, a polymeric phosphate binder, are introduced as embolic material for interventional treatment of rabbit VX2 liver cancer model. This technique is named as "transarterial sevelamer embolization (TASE)." The microspheres prove to be highly biocompatible, and TASE is found to be a safe local-regional technique. Compared with conventional transarterial chemoembolization (TACE), TASE is found to not only occlude the tumor-feeding vessel, but simultaneously deplete intratumoral inorganic phosphate (Pi), thereby inducing severe necrosis as well reducing metastasis and recurrence. Reduced Pi stress inhibits tumor vascularity, invasion, and metastasis by downregulating the angiogenic factors and oncoprotein expression. Energy metabolomics indicate that Pi stress also suppresses tumor anaerobic glycolysis and glutaminolysis. This systemic anti-cancer effect indicates a promising new application for sevelamer and TASE as a potential alternative to conventional TACE for liver cancer treatment.
Numerous studies have shown the positive correlation between high levels of Pi and tumour progression. A critical goal of macrophage‐based cancer therapeutics is to reduce anti‐inflammatory macrophages (M2) and increase proinflammatory antitumour macrophages (M1). This study aimed to investigate the relationship between macrophage polarization and low‐Pi stress. First, the spatial populations of M2 and M1 macrophages in 22 HCC patient specimens were quantified and correlated with the local Pi concentration. The levels of M2 and M1 macrophage markers expressed in the peritumour area were higher than the intratumour levels, and the expression of M2 markers was positively correlated with Pi concentration. Next, monocytes differentiated from THP‐1 cells were polarized against different Pi concentrations to investigate the activation or silencing of the expression of p65, IκB‐α and STAT3 as well as their phosphorylation. Results showed that low‐Pi stress irreversibly repolarizes tumour‐associated macrophages (TAMs) towards the M1 phenotype by silencing stat6 and activating p65. Moreover, HepG‐2 and SMCC‐7721 cells were cultured in conditioned medium to investigate the innate anticancer immune effects on tumour progression. Both cancer cell lines showed reduced proliferation, migration and invasion, as epithelial–mesenchymal transition (EMT) was inactivated. In vivo therapeutic effect on the innate and adaptive immune processes was validated in a subcutaneous liver cancer model by the intratumoural injection of sevelamer. Tumour growth was significantly inhibited by the partial deprivation of intratumoural Pi as the tumour microenvironment under low‐Pi stress is more immunostimulatory. The anticancer immune response, activated by low‐Pi stress, suggests a new macrophage‐based immunotherapeutic modality.
Glioblastoma multiform (GBM) is a highly aggressive primary brain tumor. Exosomes derived from glioma cells under a hypoxic microenvironment play an important role in tumor biology including metastasis, angiogenesis and chemoresistance. However, the underlying mechanisms remain to be elucidated. In this study, we aimed to explore the role of connexin 43 on exosomal uptake and angiogenesis in glioma under hypoxia. U251 cells were exposed to 3% oxygen to achieve hypoxia, and the expression levels of HIF-1α and Cx43, involved in the colony formation and proliferation of cells were assessed. Exosomes were isolated by differential velocity centrifugation from U251 cells under normoxia and hypoxia (Nor-Exos and Hypo-Exos), respectively. Immunofluorescence staining, along with assays for CCK-8, tube formation and wound healing along with a transwell assay were conducted to profile exosomal uptake, proliferation, tube formation, migration and invasion of HUVECs, respectively. Our results revealed that Hypoxia significantly up-regulated the expression of HIF-1α in U251 cells as well as promoting proliferation and colony number. Hypoxia also increased the level of Cx43 in U251 cells and in the exosomes secreted. The uptake of Dio-stained Hypo-Exos by HUVECs was greater than that of Nor-Exos, and inhibition of Cx43 by 37,43 gap27 or lenti-Cx43-shRNA efficiently prevented the uptake of Hypo-Exos by recipient endothelial cells. In addition, the proliferation and total loops of HUVECs were remarkably increased at 24 h, 48 h, and 10 h after Hypo-Exos, respectively. Notably, 37,43 gap27, a specific Cx-mimetic peptide blocker of Cx37 and Cx43, efficiently alleviated Hypo-Exos-induced proliferation and tube formation by HUVECs. Finally, 37,43 gap27 also significantly attenuated Hypo-Exos-induced migration and invasion of HUVECs. These findings demonstrate that exosomal Cx43 contributes to glioma angiogenesis mediated by Hypo-Exos, and suggests that exosomal Cx43 might serve as a potential therapeutic target for glioblastoma.
Background It is difficult to achieve whole tumor ablation using percutaneous ethanol ablation therapy (PEAT) due to the limited diffusion of ethanol. Purpose To determine whether chemotherapy can be an adjuvant therapy to benefit PEAT, we investigated ultrasound-guided percutaneous ethanol-paclitaxel combined therapy (PEPCT) of VX2 carcinoma, a rabbit liver cancer model. Materials and Methods A six-arm study was designed to quantify the correlation between paclitaxel (PTX) dose and tumor necrosis or cell proliferation, including sham group (2 mL saline, n=6), incremented dose of PTX (0, 12.5, 25, 37.5 mg) in 2.0 mL ethanol (n=6) and a conventional PEAT group (n=6) as comparison. The test was followed by contrast-enhanced ultrasonic (CEUS) before 7-day sacrifice, tumor harvest, and sectioning. Tumor necrosis ratio was radiologically and histologically quantified; modified proliferation index ( m -PI) was proposed to quantify the PTX’s pharmacological effects. A linear regression model was set to correlate the PTX dose with tumor necrosis ratio or cell proliferation index. The difference of radiological, histological necrosis ratio (HNR) and modified PI in six groups was analyzed via Kruskal–Wallis H -test, Welch analysis of variance and one-way ANOVA. Results Incremental increases of PTX (0, 12.5, 25, 37.5 mg) correlated with greater fraction of tumor necrosis (R 2 = 0.946, P<0.001 for radiological necrosis ratio [RNR], R 2 = 0.843, P<0.001 forHNR), indicating that one week after procedure PTX’s anti-proliferation and ethanol’s dehydration co-induced severe tumor necrosis. Correlation analysis further testified a significant association between PTX dose and m -PI (R 2 = 0.860, P<0.001). Conclusion These results suggest a clear role for PTX-induced cytotoxicity and support the use of chemotherapeutic drugs in ablation therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.