Glioblastoma is one of the most aggressive brain tumors with high morbidity and mortality. Hypoxia is often the common characteristic of tumor microenvironment, and hypoxia-inducible factor-1α (HIF-1α) is an essential factor regulating the migratory activity of cancer cells including glioblastoma. Recently, mitochondrial dynamics was found to be involved in the aggression of cancer cells. However, whether dynamin-related protein 1 (Drp1) contributes to the migration of human glioblastoma cells under hypoxia remains unknown. In the present study, hypoxia was found to upregulate the transcription and expression of Drp1, and stimulated mitochondrial fission in glioblastoma U251 cells. Inhibition of HIF-1α with echinomycin blocked hypoxia‑induced expression of Drp1. Notably, Drp1 inhibitor Mdivi-1 efficiently attenuated hypoxia-induced mitochondrial fission and migration of U251 cells. In addition, three U251 stable cell lines expressing GFP, GFP-Drp1 and dominant negative GFP-Drp1‑K38A were established to examine the direct role of Drp1 in hypoxia-induced migration. MTT assay showed that there was no significant difference in proliferation of three cell lines. Compared with the GFP cell line, exogenously expressed GFP-Drp1-K38A inhibited hypoxia-induced migration of U251 cells, while stable expression of GFP-Drp1 enhanced the migration of U251 cells under hypoxia. Therefore, this study indicates the involvement of Drp1 in hypoxia-induced migration of human glioblastoma U251 cells, and suggests Drp1 to be a potential therapeutic target to suppress the aggression of glioblastoma in the future.
Mitochondria are high dynamic organelles with frequent fission and fusion. Here, we found hypoxia stimulated Drp1 expression, mitochondrial fission and migration in metastatic MDA-MB‑231 cells, but not in non-metastatic MCF-7 cells. Inhibition of Drp1-dependent mitochondrial fission by Mdivi-1 or silencing Drp1 attenuated hypoxia-induced mitochondrial fission and migration in MDA-MB‑231 cells. On the other hand, cisplatin induced significant apoptosis and mitochondrial fission in MDA-MB‑231 cells, but not in MCF-7 cells. Mdivi-1 and silencing Drp1 also efficiently prevented cisplatin-induced MMP decrease, ROS production and apoptosis in MDA-MB‑231 cells. Our data suggest that Drp1-dependent mitochondrial fission not only regulates hypoxia-induced migration of breast cancer cells, but also facilitates its sensitivity to chemotherapeutic agents. Thus, targeting Drp1-dependent mitochondrial dynamics may provide a novel strategy to suppress breast cancer metastasis and improve the chemotherapeutic effect in the future.
Alzheimer's disease (AD), with a typical pathological hallmark of amyloid-beta (Aβ)-containing plaques and neurofibrillary tangles, is one of the most common types of chronic neurodegenerative diseases. Aβ oligomers serve a crucial role in the pathogenesis of AD, and lead to neuronal loss. However, the precise mechanism of Aβ oligomers in AD remains to be elucidated. The present study demonstrated that 10 µM Aβ-42 activated the caspase signaling pathway, and induced significant apoptosis in primary cultured mouse cerebral cortical neurons. The results of reverse transcription-quantitative polymerase chain reaction and western blotting demonstrated that Aβ-42 (10 µM) also significantly upregulated the transcription and expression of the mitochondrial fission protein dynamin-related protein 1 (Drp1), and downregulated the transcription and expression of mitochondrial fusion proteins, including mitofusin 1/2 (Mfn1/2) and mitochondrial dynamin like GTPase (OPA-1). Neurons were transfected with pDsRed2-Mito for mitochondrial imaging, which revealed that 10 µM Aβ-42 induced mitochondrial fission in cortical neurons. In addition, 2′,7′-dichlorodihydrofluorescein diacetate and tetramethylrhodamine ethyl ester staining indicated that Aβ-42 increased the reactive oxygen species (ROS) level and reduced mitochondrial membrane potential in neurons. Inhibition of Drp1 activity by Mdivi-1 efficiently prevented Aβ-42-induced ROS production and disruption of mitochondrial membrane potential. Loss of mitochondrial membrane potential may activate PTEN-induced putative kinase 1 (Pink1), the prominent sensor for mitochondrial damage, and trigger the process of mitophagy to remove the damaged mitochondria. In the present study, western blotting revealed that the levels of autophagy marker microtubule-associated proteins 1A/1B light chain 3B (LC3B) and Pink1 were upregulated after Aβ-42 stimulation. In conclusion, these data indicated that Aβ-42 induces neuronal apoptosis by targeting mitochondria, including promotion of mitochondrial fission, disruption of mitochondrial membrane potential, increasing intracellular ROS level and activation of the process of mitophagy. Therefore, mitochondria may represent a potential therapeutic target for AD in the future.
Glioblastoma is the most common and aggressive brain tumor and it is characterized by a high mortality rate. Temozolomide (TMZ) is an effective chemotherapy drug for glioblastoma, but the resistance to TMZ has come to represent a major clinical problem, and its underlying mechanism has yet to be elucidated. In the present study, the role of exosomal connexin 43 (Cx43) in the resistance of glioma cells to TMZ and cell migration was investigated. First, higher expression levels of Cx43 were detected in TMZ-resistant U251 (U251r) cells compared with those in TMZ-sensitive (U251s) cells. Exosomes from U251s or U251r cells (sExo and rExo, respectively) were isolated. It was found that the expression of Cx43 in rExo was notably higher compared with that in sExo, whereas treatment with rExo increased the expression of Cx43 in U251s cells. Additionally, exosomes stained with dioctadecyloxacarbocyanine (Dio) were used to visualized exosome uptake by glioma cells. It was observed that the uptake of Dio-stained rExo in U251s cells was more prominent compared with that of Dio-stained sExo, while 37,43 Gap27, a gap junction mimetic peptide directed against Cx43, alleviated the rExo uptake by cells. Moreover, rExo increased the IC 50 of U251s to TMZ, colony formation and Bcl-2 expression, but decreased Bax and cleaved caspase-3 expression in U251s cells. 37,43 Gap27 efficiently inhibited these effects of rExo on U251s cells. Finally, the results of the wound healing and Transwell assays revealed that rExo significantly enhanced the migration of U251s cells, whereas 37,43 Gap27 significantly attenuated rExo-induced cell migration. Taken together, these results indicate the crucial role of exosomal Cx43 in chemotherapy resistance and migration of glioma cells, and suggest that Cx43 may hold promise as a therapeutic target for glioblastoma in the future.
Cisplatin (DDP) is the first-line chemotherapeutic agent for ovarian cancer. However, the development of DDP resistance seriously influences the chemotherapeutic effect and prognosis of ovarian cancer. It was reported that DDP can directly impinge on the mitochondria and activate the intrinsic apoptotic pathway. Herein, the role of mitochondrial dynamics in DDP chemoresistance in human ovarian cancer SKOV3 cells was investigated. In DDP-resistant SKOV3/DDP cells, mitochondrial fission protein DRP1 was down-regulated, while mitochondrial fusion protein MFN2 was up-regulated. In accordance with the expression of DRP1 and MFN2, the average mitochondrial length was significantly increased in SKOV3/DDP cells. In DDP-sensitive parental SKOV3 cells, downregulation of DRP1 and upregulation of mitochondrial fusion proteins including MFN1,2 and OPA1 occurred at day 2~6 under cisplatin stress. Knockdown of DRP1 or overexpression of MFN2 promoted the resistance of SKOV3 cells to cisplatin. Intriguingly, weaker migration capability and lower ATP level were detected in SKOV3/DDP cells. Respective knockdown of DRP1 in parental SKOV3 cells or MFN2 in SKOV3/DDP cells using siRNA efficiently reversed mitochondrial dynamics, migration capability and ATP level. Moreover, MFN2 siRNA significantly aggravated the DDP-induced ROS production, mitochondrial membrane potential disruption, expression of pro-apoptotic protein BAX and Cleaved Caspase-3/9 in SKOV3/DDP cells. In contrast, DRP1 siRNA alleviated DDP-induced ROS production, mitochondrial membrane potential disruption, expression of pro-apoptotic protein BAX and Cleaved Caspase-3/9 in SKOV3 cells. Thus, these results indicate that mitochondrial dynamics mediated by DRP1 and MFN2 contributes to the development of DDP resistance in ovarian cancer cells, and will also provide a new strategy to prevent chemoresistance in ovarian cancer by targeting mitochondrial dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.