Oxidative stress and inflammation interact in the development of diabetic atherosclerosis. Intracellular hyperglycemia promotes production of mitochondrial reactive oxygen species (ROS), increased formation of intracellular advanced glycation end-products, activation of protein kinase C, and increased polyol pathway flux. ROS directly increase the expression of inflammatory and adhesion factors, formation of oxidized-low density lipoprotein, and insulin resistance. They activate the ubiquitin pathway, inhibit the activation of AMP-protein kinase and adiponectin, decrease endothelial nitric oxide synthase activity, all of which accelerate atherosclerosis. Changes in the composition of the gut microbiota and changes in microRNA expression that influence the regulation of target genes that occur in diabetes interact with increased ROS and inflammation to promote atherosclerosis. This review highlights the consequences of the sustained increase of ROS production and inflammation that influence the acceleration of atherosclerosis by diabetes. The potential contributions of changes in the gut microbiota and microRNA expression are discussed.
Background
N6-methyladenosine (m6A) is the most abundant reversible methylation modification of eukaryotic mRNA, and it plays vital roles in tumourigenesis. This study aimed to explore the role of the m6A demethylase ALKBH5 in pancreatic cancer (PC).
Methods
The expression of ALKBH5 and its clinicopathological impact were evaluated in PC cohorts. The effects of ALKBH5 on the biological characteristics of PC cells were investigated on the basis of gain-of-function and loss-of-function analyses. Subcutaneous and orthotopic models further uncovered the role of ALKBH5 in tumour growth. mRNA and m6A sequencing and assays of m6A methylated RNA immunoprecipitation-qPCR (MeRIP-qPCR) were performed to identify the targeted effect of ALKBH5 on PER1. P53-binding sites in the ALKBH5 promoter were investigated by ChIP and luciferase assays to reveal the interplay between ALKBH5 and PER1-activated ATM-CHK2-P53/CDC25C signalling.
Results
ALKBH5 loss characterized the occurrence and poor clinicopathological manifestations in patients with PC. Overexpression of ALKBH5 reduced tumoural proliferative, migrative, invasive activities in vitro and ameliorated tumour growth in vivo, whereas ALKBH5 knockdown facilitated PC progression. Mechanistically, ALKBH5 posttranscriptionally activated PER1 by m6A demethylation in an m6A-YTHDF2-dependent manner. PER1 upregulation led to the reactivation of ATM-CHK2-P53/CDC25C signalling, which inhibited cell growth. P53-induced activation of ALKBH5 transcription acted as a feedback loop regulating the m6A modifications in PC.
Conclusion
ALKBH5 serves as a PC suppressor by regulating the posttranscriptional activation of PER1 through m6A abolishment, which may highlight a demethylation-based approach for PC diagnosis and therapy.
In failing hearts, the dominant AMPKα isoform switched from AMPKα2 to AMPKα1, which accelerated HF. The results show that phosphorylation of Ser495 in PINK1 by AMPKα2 was essential for efficient mitophagy to prevent the progression of HF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.