BackgroundMicroRNAs are now recognized as key post-transcriptional regulators in animal ontogenesis and phenotypic diversity. Eupolyphaga sinensis Walker (Blattaria) is a sexually dimorphic insect, which is also an important source of material used in traditional Chinese medicine. The male E. sinensis have shorter lifecycles and go through fewer instars than the female. Furthermore, the males have forewings, while the females are totally wingless.ResultsWe used the Illumina/Solexa deep sequencing technology to sequence small RNA libraries prepared from the fourth-instar larvae of male and female E. sinensis. 19,097,799 raw reads were yielded in total: 7,817,445 reads from the female library and 11,280,354 from the male, respectively. As a result, we identified 168 known miRNAs belonging to 55 families as well as 204 novel miRNAs. Moreover, 45 miRNAs showed significantly different expression between the female and the male fourth-instar larvae, and we validated 10 of them by Stem-loop qRT-PCR. Some of these differentially expressed miRNAs are related to metamorphosis, development and phenotypic diversity.Conclusions/SignificanceThis is the first comprehensive description of miRNAs in E. sinensis. The results provide a useful resource for further in-depth study on molecular regulation and evolution of miRNAs. These findings not only enrich miRNAs for hemimetabolans but also lay the foundation for the study of post-transcriptional regulation on the phenomena of sexual dimorphism.
Flowering is a critical stage of plant development and is closely correlated with seed production and crop yield. Flowering transition is regulated by complex genetic networks in response to endogenous and environmental signals. FLOWERING LOCUS C (FLC) is a central repressor in the flowering transition of Arabidopsis thaliana. The regulation of FLC expression is well studied at transcriptional and post-transcriptional levels. A subset of antisense transcripts from FLC locus, collectively termed cold-induced long antisense intragenic RNAs (COOLAIR), repress FLC expression under cold exposure. Recent studies have provided important insights into the alternative splicing of COOLAIR and FLC sense transcripts in response to developmental and environmental cues. Herein, at the 20th anniversary of FLC functional identification, we summarise new research advances in the alternative splicing of FLC sense and antisense transcripts that regulates flowering.
AtU2AF65a and AtU2AF65b encode the large subunit of the U2AF complex and mediate the splicing of key flowering genes to control flowering transition in response to ambient temperature and ABA signaling.
We sequenced the complete mitochondrial genome of Massicus raddei, which is the first beetle sequenced in Cerambycinae to date. The complete mitochondrial genome is 15,585 bp in length with an A + T content of 71.82%, and contains 13 protein-coding genes, 2 rRNAs, 22 tRNAs and a control region. The gene order and orientation are similar to that of typical insect species. These data will provide useful molecular information for phylogenetic relationships among the suborders of Coleoptera. By using 13 protein-coding genes as phylogenetic markers, the results support that the suborder Archostemata is a sister group to the remaining beetles and the most primitive suborder in any case; the suborder Myxophaga is sister to the suborder Adephaga.
Sorbitol dehydrogenase (SDH) catalyses the reversible oxidation of sorbitol, xylitol and ribitol to their corresponding ketoses. In this study, we investigated the expression and role of Arabidopsis SDH in salt and osmotic stress tolerance, and abscisic acid (ABA) response. The expression patterns of SDH were investigated using transgenic Arabidopsis plants expressing beta-glucuronidase (GUS) under control of the promoter with the first intron of SDH. qRT-PCR and histochemical assay of GUS activity were used to study SDH expression regulation by ABA, salt and osmotic stress. SDH-overexpression lines of Arabidopsis were used to investigate the role of SDH in salt and osmotic stress, and ABA response. Arabidopsis SDH was predominantly expressed in source organs such as green cotyledons, fully expanded leaves and sepals, especially in vascular tissues of theses organs. SDH expression was inhibited by NaCl and mannitol treatments. Seed germination and post-germination growth of SDH-overexpressing lines exhibited decreased sensitivity to salt and osmotic stress compared to WT plants. The transcript of SDH was induced by ABA. Overexpression of SDH decreased sensitivity to ABA during seed germination and post-germination growth. Expression of AAO3 increased but ABI5 and MYB2 decreased in SDH-overexpressing lines after ABA treatment. This study demonstrates that expression of SDH is regulated by ABA, salt and osmotic stress. SDH functions in plant tolerance to salt and osmotic stress, and ABA response via specific regulating gene expression of ABA synthesis and signalling in Arabidopsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.