BackgroundAlthough the prognostic roles of β-catenin expression in non-small cell lung cancer (NSCLC) have been reported in several immunohistochemical (IHC) studies, the results were not consistent because some studies lack sufficient number of the positive cases or did not evaluate the subcellular localization features of the protein.MethodIn this study, we have evaluated the expression levels and subcellular localization of β-catenin and Nanog proteins IHC staining in tissue specimens from 309 patients with NSCLC, and explored their association with clinicopathological features and patient outcome.ResultsWe showed that patients with negative expression of membranous beta-catenin had a trend towards shorter survival (p=0.064) than those with positive expression. In contrast to previous studies, we found that increased expression of either cytoplasmic or nuclear β-catenin was strongly associated with poor prognosis and was an independent prognosticator for overall survival (p <0.01). We further found that NSCLC cells frequently exhibited an abundance of nuclear Nanog protein which was significantly correlated with nuclear β-catenin expression (p <0.01) and poor prognosis (p <0.01). Interestingly, immunofluorescent staining results revealed that increased expression of Nanog and nuclear translocation of β-catenin occurred concomitantly in response to epidermal growth factor receptor(EGFR) signaling in A549 and H23 cells. Furthermore, western blot analysis show that nuclear β-catenin rather than cytoplasmic β-catenin expression in the A549 and H23 cells can be enhanced by adding EGF, Nanog expression in the A549 and H23 cells with knockdown of β-catenin can not be obviously enhanced by adding EGF.ConclusionWe propose that evaluation of subcellular localization of β-catenin and Nanog expression is of clinical significance for patients with NSCLC.
We herein report that sulforaphane (SFN), a potent anti-cancer and well-tolerated dietary compound, inhibits cancer stem-like cell (CSC) properties and enhances therapeutic efficacy of cisplatin in human non-small cell lung cancer (NSCLC). SFN exerted these functions through upregulation of miR-214, which in turn targets the coding region of c-MYC. This finding was further corroborated by our observations that plasmid or lentiviral vector-mediated expression of 3'UTR-less c-MYC cDNA and cisplatin- or doxorubicin-induced endogenous c-MYC accumulation was similarly suppressed by either SFN or miR-214. Further, we showed that the reported inhibitory effects of SFN on β-catenin are also mediated by miR-214. SFN/miR-214 signaling inhibited CSC properties and enhanced the cytotoxicity of chemotherapeutic drugs in vitro. Experiments with nude mice carrying xenograft tumors showed that SFN sensitized NSCLC cells to cisplatin's efficacy, which is accompanied by inhibition of cisplatin-induced c-MYC accumulation in tumor tissues. Our results provided strong evidence and mechanisms to support consideration of SFN or synthetic derivatives as a therapeutic agent in combination with cisplatin for the treatment of patients with NSCLC and, potentially, other types of c-MYC-addicted tumors.
G protein-coupled receptors, the largest cell surface receptor family, have emerged as critical players in cell death and survival. High gene expression level of the Gq-coupled P2Y1 nucleotide receptor in PC-3 prostate cancer cells was demonstrated using real-time quantitative PCR and confirmed by Western blotting and confocal laser scanning microscopy. A selective P2Y1 receptor agonist, the ADP analogue MRS2365, concentration-dependently induced intracellular calcium mobilization (EC50 5.28 nM), which was diminished by P2Y1 receptor-selective antagonist MRS2500. P2Y1 receptor activation by MRS2365 induced apoptosis in assays of Caspase-3, LDH release, and Annexin-V staining. The pro-apoptotic effect of MRS2365 was blocked by MRS2500, P2Y1 siRNA, and an inhibitor of the MAP kinase pathway PD98059. MRS2365 significantly inhibited the proliferation of PC-3 cells, examined using a MTT assay. Thus, activation of the P2Y1 receptor induced cell death and inhibited growth of human prostatic carcinoma PC-3 cells. Activation of the P2Y1 receptor should be a novel and promising therapeutic strategy for prostate cancer.
BackgroundHuman xenograft models, resulting from orthotopic transplantation (implantation into the anatomically correct site) of histologically intact tissue into animals, are important for investigating local tumor growth, vascular and lymphatic invasion at the primary tumor site and metastasis.Methodology/Principal FindingsWe used surgical orthotopic transplantation to establish a nude mouse model of primary hepatic lymphoma (PHL), HLBL-0102. We performed orthotopic transfer of the HLBL-0102 tumor for 42 generations and characterized the tumor cells. The maintenance of PHL characteristics were supported by immunohistochemical and cytogenetic analysis. We also report the antitumor effect of Cantide, an antisense phosphorothioate oligonucleotide against hTERT, on the growth of HLBL-0102 tumors. We showed a significant, dose-dependent inhibition of tumor weight and serum LDH activity in the orthotopically transplanted animals by Cantide. Importantly, survival was prolonged in Cantide-treated HLBL-0102 tumor-bearing mice when compared to mock-treated mice.Conclusions/SignificanceOur study provided the basis for the development of a clinical trial protocol to treat PHL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.