In container terminals, the actual arrival time and handling time of a vessel often deviate from the scheduled ones. Being the input to yard space allocation and crane planning, berth allocation is one of the most important activities in container terminals. Any change of berth plan may lead to significant changes of other operations, deteriorating the reliability and efficiency of terminal operations. In this paper, we study a robust berth allocation problem (RBAP) which explicitly considers the uncertainty of vessel arrival delay and handling time. Time buffers are inserted between the vessels occupying the same berthing location to give room for uncertain delays. Using total departure delay of vessels as the service measure and the length of buffer time as the robustness measure, we formulate RBAP to balance the service level and plan robustness. Based on the properties of the optimal solution, we develop a robust berth scheduling algorithm (RBSA) that integrates simulated annealing and branch-and-bound algorithm. To evaluate our model and algorithm design, we conduct computational study to show the effectiveness of the proposed RBSA algorithm, and use simulation to validate the robustness and service level of the RBAP formulation.
To quantify the impacts of tides on seaside operations in container ports, this study reformulates the berth allocation problem by modeling their impacts on the entrance/exit of vessels into/from ports. Furthermore, to mitigate the tidal impacts, we borrow the so-called virtual arrival policy, whose potential for reducing bunker fuel consumption and vessel emissions is widely recognized by the shipping industry, and accordingly retrofit the berth allocation model. In the latter model, the state-of-the-art technique of second-order cone programming is adopted to handle the nonlinear intractability involved. We conduct extensive numerical experiments to evaluate the impacts of tides on the seaside operations in a tidal container port, and also to verify the competence of the virtual arrival policy in delivering win–win economic and environmental benefits for both the port and shipping lines. It is also intriguing to observe that the virtual arrival policy would be an applicable substitute for the costly approach of deepening the navigation channel in a tidal port.
The carmine spider mite (CSM), Tetranychus cinnabarinus, is an important pest mite in agriculture, because it can develop insecticide resistance easily. To gain valuable gene information and molecular basis for the future insecticide resistance study of CSM, the first transcriptome analysis of CSM was conducted. A total of 45,016 contigs and 25,519 unigenes were generated from the de novo transcriptome assembly, and 15,167 unigenes were annotated via BLAST querying against current databases, including nr, SwissProt, the Clusters of Orthologous Groups (COGs), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). Aligning the transcript to Tetranychus urticae genome, the 19255 (75.45%) of the transcripts had significant (e-value <10−5) matches to T. urticae DNA genome, 19111 sequences matched to T. urticae proteome with an average protein length coverage of 42.55%. Core Eukaryotic Genes Mapping Approach (CEGMA) analysis identified 435 core eukaryotic genes (CEGs) in the CSM dataset corresponding to 95% coverage. Ten gene categories that relate to insecticide resistance in arthropod were generated from CSM transcriptome, including 53 P450-, 22 GSTs-, 23 CarEs-, 1 AChE-, 7 GluCls-, 9 nAChRs-, 8 GABA receptor-, 1 sodium channel-, 6 ATPase- and 12 Cyt b genes. We developed significant molecular resources for T. cinnabarinus putatively involved in insecticide resistance. The transcriptome assembly analysis will significantly facilitate our study on the mechanism of adapting environmental stress (including insecticide) in CSM at the molecular level, and will be very important for developing new control strategies against this pest mite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.