Lithium–sulfur batteries have attracted attention due to their six-fold specific energy compared with conventional lithium-ion batteries. Dissolution of lithium polysulfides, volume expansion of sulfur and uncontrollable deposition of lithium sulfide are three of the main challenges for this technology. State-of-the-art sulfur cathodes based on metal-oxide nanostructures can suppress the shuttle-effect and enable controlled lithium sulfide deposition. However, a clear mechanistic understanding and corresponding selection criteria for the oxides are still lacking. Herein, various nonconductive metal-oxide nanoparticle-decorated carbon flakes are synthesized via a facile biotemplating method. The cathodes based on magnesium oxide, cerium oxide and lanthanum oxide show enhanced cycling performance. Adsorption experiments and theoretical calculations reveal that polysulfide capture by the oxides is via monolayered chemisorption. Moreover, we show that better surface diffusion leads to higher deposition efficiency of sulfide species on electrodes. Hence, oxide selection is proposed to balance optimization between sulfide-adsorption and diffusion on the oxides.
Lithium-sulfur batteries show fascinating potential for advanced energy storage systems due to their high specific capacity, low-cost, and environmental benignity. However, the shuttle effect and the uncontrollable deposition of lithium sulfide species result in poor cycling performance and low Coulombic efficiency. Despite the recent success in trapping soluble polysulfides via porous matrix and chemical binding, the important mechanism of such controllable deposition of sulfur species has not been well understood. Herein, we discovered that conductive Magnéli phase Ti4O7 is highly effective matrix to bind with sulfur species. Compared with the TiO2-S, the Ti4O7-S cathodes exhibit higher reversible capacity and improved cycling performance. It delivers high specific capacities at various C-rates (1342, 1044, and 623 mAh g(-1) at 0.02, 0.1, and 0.5 C, respectively) and remarkable capacity retention of 99% (100 cycles at 0.1 C). The superior properties of Ti4O7-S are attributed to the strong adsorption of sulfur species on the low-coordinated Ti sites of Ti4O7 as revealed by density functional theory calculations and confirmed through experimental characterizations. Our study demonstrates the importance of surface coordination environment for strongly influencing the S-species binding. These findings can be also applicable to numerous other metal oxide materials.
The effects of surface structures on the selectivity of catalytic furfural conversion over platinum (Pt) catalysts in the presence of hydrogen have been studied using first principles density functional theory (DFT) calculations and microkinetic modeling. Three Pt model surface structures, that is, flat Pt(111), stepped Pt(211), and Pt 55 cluster are chosen to represent the terrace, step, and corner sites of Pt nanoparticle. DFT results show that the dominant reaction route (hydrogenation or decarbonylation) in furfural conversion depends strongly on the structures (or reactive sites). Using the size-dependent site distribution rule, our microkinetic modeling results indicate the decarbonylation route prevails over smaller Pt particles less than 1.4 nm while the hydrogenation is the dominant reaction route over larger Pt catalyst particles at T 5 473 K and P H 2 5 93 kPa. This is in good agreement with the reported experimental observations.
The surface stability of all possible terminations for three low-index (100, 110, 111) structures of spinel MgAl 2 O 4 was studied using a first-principles-based thermodynamic approach. The surface Gibbs free energy results indicate that the 100_AlO 2 termination is the most stable surface structure under ultrahigh vacuum at T = 1100 K regardless of an Al-poor or Al-rich condition. With increasing oxygen pressure, the 111_O 2 (Al) termination becomes the most stable surface in the Al-rich condition. The oxygen vacancy formation is thermodynamically favorable over the 100_AlO 2 , 111_O 2 (Al), and ( 111) structures with Mg/O connected terminations. On the basis of the surface Gibbs free energies for both perfect and defective surface terminations, 100_AlO 2 and 111_O 2 (Al) are the most dominant surfaces in Al-rich conditions under atmospheric conditions. This is also consistent with our previously reported experimental observation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.