Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels widely distributed in the central peripheral nervous system and muscles which participate in rapid synaptic transmission. The α9α10 nAChR is an acetylcholine receptor subtype and is involved in chronic pain. In the present study, a new A-superfamily conotoxin Bt14.12 cloned from Conus betulinus was found to selectively inhibit α9α10 nAChRs with an IC 50 of 62.3 nM. Unlike α-conotoxins and other Asuperfamily conotoxins, Bt14.12 contains a four Cys (C−C−C−C) framework with a unique disulfide bond connection "C1−C4, C2−C3". The structure−activity studies of Bt14.12 demonstrate that all amino acid residues contribute to its potency. Interestingly, mutation experiments show that the deletion of Asp 2 or the addition of three Arg residues at the N-terminus of Bt14.12 significantly enhances its inhibitory activity (IC 50 is 21.9 nM or 12.7 nM, respectively) by 2-or 4-fold compared to the wild-type Bt14.12. The NMR structure of Bt14.12 shows that it contains α-helixand β-turn-like elements, and further computational modelings of the interaction between Bt14.12 and the α9α10 nAChR demonstrate that Bt14.12 possesses a distinctive mode of action and displays a different structure−activity relationship from known α9α10 nAChR targeting α-conotoxins. Our findings provide a novel conotoxin that potently targets α9α10 nAChRs and a new motif for designing potent inhibitors against α9α10 nAChRs.
α-Conotoxins GI and MI belong to the 3/5 subfamily of α-conotoxins and potently inhibit muscular nicotinic acetylcholine receptors (nAChRs). To date, no 3/4- or 3/6-subfamily α-conotoxins have been reported to inhibit muscular nAChRs. In the present study, a series of new 3/4-, 3/6-, and 3/7-subfamily GI and MI variants were synthesized and functionally characterized by modifications of loop2. The results show that the 3/4-subfamily GI variant GI[∆8G]-II and the 3/6-subfamily variants GI[+13A], GI[+13R], and GI[+13K] displayed potent inhibition of muscular nAChRs expressed in Xenopus oocytes, with an IC50 of 45.4–73.4 nM, similar to or slightly lower than that of wild-type GI (42.0 nM). The toxicity of these GI variants in mice appeared to be about a half to a quarter of that of wild-type GI. At the same time, the 3/7-subfamily GI variants showed significantly lower in vitro potency and toxicity. On the other hand, similar to the 3/6-subfamily GI variants, the 3/6-subfamily MI variants MI[+14R] and MI[+14K] were also active after the addition of a basic amino acid, Arg or Lys, in loop2, but the activity was not maintained for the 3/4-subfamily MI variant MI [∆9G]. Interestingly, the disulfide bond connectivity “C1–C4, C2–C3” in the 3/4-subfamily variant GI[∆8G]-II was significantly more potent than the “C1–C3, C2–C4” connectivity found in wild-type GI and MI, suggesting that disulfide bond connectivity is easily affected in the rigid 3/4-subfamily α-conotoxins and that the disulfide bonds significantly impact the variants’ function. This work is the first to demonstrate that 3/4- and 3/6-subfamily α-conotoxins potently inhibit muscular nAChRs, expanding our knowledge of α-conotoxins and providing new motifs for their further modifications.
α-conotoxin AuIB is the only one of the 4/6 type α-conotoxins (α-CTxs) that inhibits the γ-aminobutyric acid receptor B (GABABR)-coupled N-type calcium channel (CaV2.2). To improve its inhibitory activity, a series of variants were synthesized and evaluated according to the structure–activity relationships of 4/7 type α-CTxs targeting GABABR-coupled CaV2.2. Surprisingly, only the substitution of Pro7 with Arg results in a 2–3-fold increase in the inhibition of GABABR-coupled CaV2.2 (IC50 is 0.74 nM); substitutions of position 9–12 with basic or hydrophobic amino acid and the addition of hydrophobic amino acid Leu or Ile at the second loop to mimic 4/7 type α-CTxs all failed to improve the inhibitory activity of AuIB against GABABR-coupled CaV2.2. Interestingly, the most potent form of AuIB[P7R] has disulfide bridges of “1–4, 2–3” (ribbon), which differs from the “1–3, 2–4” (globular) in the isoforms of wildtype AuIB. In addition, AuIB[P7R](globular) displays potent analgesic activity in the acetic acid writhing model and the partial sciatic nerve injury (PNL) model. Our study demonstrated that 4/6 type α-CTxs, with the disulfide bridge connectivity “1–4, 2–3,” are also potent inhibitors for GABABR-coupled CaV2.2, exhibiting potent analgesic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.