Chemical fixation of carbon dioxide (CO2) may be a pathway to retard the current trend of rapid global warming. However, the current economic cost of chemical fixation remains high because the chemical fixation of CO2 usually requires high temperature or high pressure. The rational design of an efficient catalyst that works at ambient conditions might substantially reduce the economic cost of fixation. Here, we report the rational design of covalent organic frameworks (COFs) as efficient CO2 fixation catalysts under ambient conditions based on the finding of “pore enrichment”, which is concluded by a detailed investigation of the 10994 COFs. The best predicted COF, Zn-Salen-COF-SDU113, is synthesized, and its efficient catalytic performance for CO2 cycloaddition to terminal epoxide is confirmed with a yield of 98.2% and turnover number (TON) of 3068.9 under ambient conditions, which is comparable to the reported leading catalysts. Moreover, this COF achieves the cycloaddition of CO2 to 2,3-epoxybutane under ambient conditions among all porous materials. This work provides a strategy for designing porous catalysts in the economic fixation of carbon dioxide.
Integrating a molecular catalyst with a light harvester into a photocatalyst is an effective strategy for solar light conversion. However, it is challenging to establish a crystallized framework with well-organized connections that favour charge separation and transfer. Herein, we report the heterogenization of a Salen metal complex molecular catalyst into a rigid covalent organic framework (COF) through covalent linkage with the light-harvesting unit of pyrene for photocatalytic hydrogen evolution. The chemically conjugated bonds between the two units contribute to fast photogenerated electron transfer and thereby promote the proton reduction reaction. The Salen cobalt-based COF showed the best hydrogen evolution activity (1378 μmol g À 1 h À 1 ), which is superior to the previously reported nonnoble metal based COF photocatalysts. This work provides a strategy to construct atom-efficient photocatalysts by the heterogenization of molecular catalysts into covalent organic frameworks.
Real-time 3-D tracking of a fast-moving object has found important applications in industry, traffic control, sports, biomedicine, defense, etc. However, it is difficult to adopt typical image-based object tracking systems in a fast-moving object tracking in real time and for a long duration, because reliable and robust image processing and analysis algorithms are often computationally exhausted, and limited storage and bandwidth can hardly fulfill the great demand of high-speed photography. Here we report an image-free 3-D tracking approach. The approach uses only two single-pixel detectors and a high-speed spatial light modulator for data acquisition. By illuminating the target moving object with six single-period Fourier basis patterns, the approach is able to analytically calculate the position of the object with the corresponding single-pixel measurements. The approach is low-cost, and data- and computation-efficient. We experimentally demonstrate that the proposed approach can detect and track a fast-moving object at a frame rate of 1666 frames per second by using a 10,000 Hz digital micromirror device. Benefiting from the wide working spectrum of single-pixel detectors, the reported approach might be applicable for hidden fast-moving object tracking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.