UiO-66 is a highly important prototypical zirconium metal−organic framework (MOF) compound because of its excellent stabilities not typically found in common porous MOFs. In its perfect crystal structure, each Zr metal center is fully coordinated by 12 organic linkers to form a highly connected framework. Using high-resolution neutron power diffraction technique, we found the first direct structural evidence showing that real UiO-66 material contains significant amount of missing-linker defects, an unusual phenomenon for MOFs. The concentration of the missinglinker defects is surprisingly high, ∼10% in our sample, effectively reducing the framework connection from 12 to ∼11. We show that by varying the concentration of the acetic acid modulator and the synthesis time, the linker vacancies can be tuned systematically, leading to dramatically enhanced porosity. We obtained samples with pore volumes ranging from 0.44 to 1.0 cm 3 / g and Brunauer−Emmett−Teller surface areas ranging from 1000 to 1600 m 2 /g, the largest values of which are ∼150% and ∼60% higher than the theoretical values of defect-free UiO-66 crystal, respectively. The linker vacancies also have profound effects on the gas adsorption behaviors of UiO-66, in particular CO 2 . Finally, comparing the gas adsorption of hydroxylated and dehydroxylated UiO-66, we found that the former performs systematically better than the latter (particularly for CO 2 ) suggesting the beneficial effect of the −OH groups. This finding is of great importance because hydroxylated UiO-66 is the practically more relevant, non-air-sensitive form of this MOF. The preferred gas adsorption on the metal center was confirmed by neutron diffraction measurements, and the gas binding strength enhancement by the −OH group was further supported by our firstprinciples calculations. ■ INTRODUCTIONMetal−organic frameworks (MOFs), consisting of inorganic metal centers connected by organic linkers, are a relatively new family of porous materials that possess rich chemistry and offer great promise for gas adsorption related applications.
Single-walled carbon nanotube (SWNT)/poly(methyl methacrylate) (PMMA) nanocomposites were prepared via our coagulation method providing uniform dispersion of the nanotubes in the polymer matrix. Optical microscopy, Raman imaging, and SEM were employed to determine the dispersion of nanotube at different length scales. The linear viscoelastic behavior and electrical conductivity of these nanocomposites were investigated. At low frequencies, G‘ becomes almost independent of the frequency as nanotube loading increases, suggesting an onset of solidlike behavior in these nanocomposites. By plotting G‘ vs nanotube loading and fitting with a power law function, the rheological threshold of these nanocomposites is ∼0.12 wt %. This rheological threshold is smaller than the percolation threshold of electrical conductivity, ∼0.39 wt %. This difference in the percolation threshold is understood in terms of the smaller nanotube−nanotube distance required for electrical conductivity as compared to that required to impede polymer mobility. Furthermore, decreased SWNT alignment, improved SWNT dispersion, and/or longer polymer chains increase the elastic response of the nanocomposite, as is consistent with our description of the nanotube network.
The trade-off between physical adsorption capacity and selectivity of porous materials is a major barrier for efficient gas separation and purification through physisorption. We report control over pore chemistry and size in metal coordination networks with hexafluorosilicate and organic linkers for the purpose of preferential binding and orderly assembly of acetylene molecules through cooperative host-guest and/or guest-guest interactions. The specific binding sites for acetylene are validated by modeling and neutron powder diffraction studies. The energies associated with these binding interactions afford high adsorption capacity (2.1 millimoles per gram at 0.025 bar) and selectivity (39.7 to 44.8) for acetylene at ambient conditions. Their efficiency for the separation of acetylene/ethylene mixtures is demonstrated by experimental breakthrough curves (0.73 millimoles per gram from a 1/99 mixture).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.