Shear thickening fluid is a smart material with rheological properties that can be rapidly varied by excitation changes. To fully explore the advantages of using shear thickening fluid in various devices, a phenomenological model for simulating complex viscosity characteristics of the shear thickening fluid has been developed, and an analytical model has been presented to predict the mechanical characteristics and performance of a damper filled with shear thickening fluid. Based on the analytical model, the force displacement curves are first analyzed for different excitation amplitudes and frequencies. Second, an investigation of the time history of the damping force at various excitation amplitudes is conducted. Finally, the effects of key design parameters on the force displacement and force velocity curves are discussed. The results show that the shear thickening fluid damper exhibits significant velocity correlation, and the damping force increased as the shear rate of shear thickening fluid increased until the threshold value. For the vibration with high frequency, or fast velocity, or large amplitude, the shear thickening fluid is easy to have high shear rate, which results in a great vibration control capability for the shear thickening fluid damper.
Shear thickening fluids (STFs) are highly concentrated colloidal suspensions consisting of monodisperse nano-particles suspended in a carrying fluid, and have the capacity to display both flowable and rigid behaviors, when subjected to sudden stimuli. In that process, the external energy that acts on an STF can be dissipated quickly. The aim of this study is to present a dynamic model of a damper filled with STF that can be directly used in control engineering fields. To this end, shear stress during phase transition of the STF material is chosen as an internal variable. A non-convex function with bifurcation behavior is used to describe the phase transitioning of STF by determining the relationship between the behavioral characteristics of the microscopic phase and macroscopic damping force. This model is able to predict force-velocity and force-displacement relationships as functions of the loading frequency. Efficacy of the model is demonstrated via comparison with experimental results from previous studies. In addition, the results confirm the hypothesis regarding the occurrence of STF phase transitioning when subject to shear stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.