Key pointsr Maternal exercise improves the metabolic health of maternal mice challenged with a high-fat diet.r Exercise intervention of obese mothers prevents fetal overgrowth. r Exercise intervention reverses impaired placental vascularization in obese mice. r Maternal exercise activates placental AMP-activated protein kinase, which was inhibited as a result of maternal obesity.Abstract More than one-third of pregnant women in the USA are obese and maternal obesity (MO) negatively affects fetal development, which predisposes offspring to metabolic diseases. The placenta mediates nutrient delivery to fetuses and its function is impaired as a result of MO. Exercise ameliorates metabolic dysfunction resulting from obesity, although its effect on placental function of obese mothers has not been explored. In the present study, C57BL/6J female mice were randomly assigned into two groups fed either a control or a high-fat diet (HFD) and then the mice on each diet were further divided into two subgroups with/without exercise. In HFD-induced obese mice, daily treadmill exercise during pregnancy reduced body weight gain, lowered serum glucose and lipid concentration, and improved insulin sensitivity of maternal mice. Importantly, maternal exercise prevented fetal overgrowth (macrosomia) induced by MO. To further examine the preventive effects of exercise on fetal overgrowth, placental vascularization and nutrient transporters were analysed. Vascular density and the expression of vasculogenic factors were reduced as a result of MO but were recovered by maternal exercise. On the other hand, the contents of nutrient transporters were not substantially altered by MO or exercise, suggesting that the protective effects of exercise in MO-induced fetal overgrowth were primarily a result of the alteration of placental vascularization and improved maternal metabolism. Furthermore, exercise enhanced downstream insulin signalling and activated AMP-activated protein kinase in HFD placenta. In sum, maternal exercise prevented fetal overgrowth induced by MO, which was Jun Seok Son received MS Degree in Kinesiology from Seoul National University. Currently, Jun Seok is a PhD student in the . His research interests focus on the impacts of maternal obesity, exercise, nutrition and other physiological conditions on fetal development and offspring health, especially the epigenetic mechanisms linking nutrients/metabolites to progenitor cell differentiation into myocytes/adipocytes. Ultimately, he aims to translate his work into clinical practice with respect to improving health outcomes for mothers and children affected by obesity.
Aging usually involves the progressive development of certain illnesses, including diabetes and obesity. Due to incapacity to form new white adipocytes, adipose expansion in aged mice primarily depends on adipocyte hypertrophy, which induces metabolic dysfunction. On the other hand, brown adipose tissue burns fatty acids, preventing ectopic lipid accumulation and metabolic diseases. However, the capacity of brown/beige adipogenesis declines inevitably during the aging process.Previously, we reported that DNA demethylation in the Prdm16 promoter is required for beige adipogenesis. DNA methylation is mediated by ten-eleven family proteins (TET) using alpha-ketoglutarate (AKG) as a cofactor. Here, we demonstrated that the circulatory AKG concentration was reduced in middle-aged mice (10-month-old) compared with young mice (2-month-old). Through AKG administration replenishing the AKG pool, aged mice were associated with the lower body weight gain and fat mass, and improved glucose tolerance after challenged with high-fat diet (HFD).These metabolic changes are accompanied by increased expression of brown adipose genes and proteins in inguinal adipose tissue. Cold-induced brown/beige adipogenesis was impeded in HFD mice, whereas AKG rescued the impairment of beige adipocyte functionality in middle-aged mice. Besides, AKG administration up-regulated Prdm16 expression, which was correlated with an increase of DNA demethylation in the Prdm16 promoter. In summary, AKG supplementation promotes beige adipogenesis and alleviates HFD-induced obesity in middle-aged mice, which is associated with enhanced DNA demethylation of the Prdm16 gene. K E Y W O R D S adipose tissue browning, aging, alpha-ketoglutarate, DNA demethylation, glucose tolerance, high-fat diet S U PP O RTI N G I N FO R M ATI O N Additional supporting information may be found online in the Supporting Information section. How to cite this article: Tian Q, Zhao J, Yang Q, et al. Dietary alpha-ketoglutarate promotes beige adipogenesis and prevents obesity in middle-aged mice. Aging Cell.
Singing by adult male zebra finches is a learned behavior important for courtship, kin recognition, and nest defense (Zann, 1996) and is inhibited by both brief periods of limited food availability and systemic injection of cannabinoids. These similar effects on singing, combined with increasing evidence for endocannabinoid involvement in feeding behavior, led us to evaluate a possible shared mechanism. We found that limited food availability both reduces singing in a cannabinoid antagonist-reversible manner and increases levels of the endocannabinoid 2-arachidonyl glycerol in various brain regions including the caudal telencephalon, an area that contains auditory telencephalon including the L2 subfield of L (L2) and caudal medial nidopallium (NCM). Development and use of an anti-zebra finch cannabinoid receptor type 1 (CB 1 ) antibody demonstrates distinct, dense cannabinoid receptor expression within song regions including Area X, lMAN (lateral magnocellular nucleus of anterior nidopallium), HVC, RA (robust nucleus of arcopallium), and L2. NCM receives L2 projections and is implicated in integration of auditory information. Activity in this area, determined through expression of the transcription factor ZENK, is increased after exposure to unfamiliar song. Because previous work has shown that these novel songstimulated increases in NCM activity are mitigated by cannabinoid exposure, we tested and found that similar effects on ZENK expression are produced by limiting food. Limited food-related reductions in the activity of NCM neurons were reversed by the cannabinoid antagonist SR141716A (N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methylpyrazole-3-carboxamide), implicating CB 1 cannabinoid receptor involvement. Taken together, these experiments indicate a link between feeding state and gene expression related to auditory perception that is mediated by endocannabinoid signaling.
Zebra finches learn song during distinct developmental stages, making them an important species for studying mechanisms underlying vocal development. Distinct interconnected forebrain regions have been identified as important to specific features of zebra finch vocal learning and production. Because prior experiments have demonstrated that late postnatal exposure to cannabinoid agonists alters zebra finch song learning, we have sought to identify brain regions likely involved in it. By using an affinity-purified polyclonal antibody directed against the zebra finch CB(1) cannabinoid receptor, we have studied staining patterns in groups of males at 25, 50, 75, and >100 days of age (adults). A general waxing and waning of staining intensity were observed over this developmental period. Distinct staining of song-related brain regions was also noted. Early establishment of staining patterns within rostral telencephalic song regions [area X and lateral magnocellular nucleus of the anterior nidopallium (lMAN)] suggests a role in auditory learning. Later establishment and maintenance in adulthood of small somata and neuropil staining within regions of rostral telencephalon [HVC and robust nucleus of the arcopallium (RA)] are consistent with a vocal motor role for cannabinoid signaling. Our results provide insight into brain regions likely responsible for cannabinoid-altered vocal learning and add to accumulating evidence supporting an important role for cannabinoid signaling in CNS development.
Formation of beige adipocytes within white adipose tissue enhances energy expenditure, which is a promising strategy to reduce obesity and prevent metabolic symptoms. Vitamin A and its bioactive metabolite, retinoic acid (RA), have regulatory roles in lipid metabolism. Here we report that RA induces white adipose tissue browning via activating vascular endothelial growth factor (VEGF) signaling. RA triggered angiogenesis and elicited de novo generation of platelet-derived growth factor receptor α positive (PDGFRα+) adipose precursor cells via VEGFA/VEGFR2 signaling. In addition, RA promoted beige/brown adipocyte formation from capillary networks in vitro. Using PDGFRα tracking mice, we found that the vascular system acted as an adipogenic repository by containing PDGFRα+ progenitors which differentiated into beige adipocytes under RA or VEGF164 treatments. Conditional knockout of VEGF receptors blocked RA-stimulated white adipose tissue browning. Moreover, the VEGFA and RA activated p38MAPK to enhance the binding of RA receptor to RA response elements of the Prdm16 promoter and upregulated Prdm16 transcription. In conclusion, RA induces white adipose tissue browning by increasing adipose vascularity and promoting beige adipogenesis of PDGFRα+ adipose progenitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.