Self-sorting organization of two AB-type heteroditopic monomers led to the formation of linear supramolecular alternating copolymers driven by host-guest noncovalent interactions based on the bis(p-phenylene)-34-crown-10/paraquat derivative and dibenzo-24-crown-8/dibenzylammonium salt recognition motifs as confirmed by 1H NMR, cyclic voltammetry, dynamic light scattering, viscosity measurements, and scanning electron microscopy.
A novel non-symmetric pillar[5]arene-based anion receptor containing multiple triazole anion-binding sites was designed and synthesized. It has high affinity and selectivity for the fluoride anion.
Based on two self-sorting host-guest recognition motifs, novel linear main-chain polypseudorotaxanes with supramolecular polymer backbones have been constructed from three components in solution at high concentrations.
The development of highly sensitive and selective detection techniques for the discrimination of relevant toxic benzenethiols and biologically active aliphatic thiols is of considerable importance in the fields of chemical, biological, and environmental sciences. In this article, we describe a new design of reaction-based fluorescent probe for discrimination of thiophenols over aliphaticthiols through intramolecular charge transfer pathways using N-butyl-4-amino-1,8-naphthalimide as a fluorophore, the strongly electron-withdrawing 2,4-dinitrobenzenesulfonamide group as a recognition unit, and 2,3-dihydroimidazo-[1,2-a] pyridine moiety as a linker. This rational design not only affords finely tunable spectroscopic properties by adding 2,3-dihydroimidazo-[1,2-a] pyridine moiety but also provides the chance to regulate the selectivity and sensitivity of the probe due to the formation of a new type of potentially reversible sulfonamide bond through 4-dimethylaminopyridine-like resonance. The developed probe displayed high off/on signal ratios, good selectivity, and sensitivity with a detection limit of 20 nM and a relative standard deviation of 1.7% for 11 replicate detections of 0.33 μM thiophenol and was successfully applied to the determination of thiophenols in water samples with quantitative recovery (from 94% to 97%) demonstrating its application prospect for thiophenols sensing in environmental and biological sciences.
Driven by orthogonal pillar[5]arene-based and crown ether-based molecular recognitions, a dynamic [1]catenane with pH-responsiveness was constructed via threading-followed-by-complexation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.