BackgroundEarthquakes and other catastrophic events frequently occurring worldwide can be considered as outliers and cause a growing and urgent need to improve our understanding of the negative effects imposed by such disasters. Earthquakes can intensively impact the birth outcomes upon psychological and morphological development of the unborn children, albeit detailed characteristics remain obscure.Methods and FindingsWe utilized the birth records at Du Jiang Yan and Peng Zhou counties to investigate the birth outcomes as a consequence of a major earthquake occurred in Wenchuan, China on May 12, 2008. Totally 13,003 of neonates were recorded, with 6638 and 6365 for pre- and post- earthquake, respectively. Significant low birthweight, high ratio of low birthweight, and low Apgar scores of post-earthquake group were observed. In contrast, the sex ratio at birth, birth length and length of gestation did not show statistical differences. The overall ratio of birth-defect in the post-earthquake (1.18%) is statistically high than that of pre-earthquake (0.99%), especially for those in the first trimester on earthquake day (1.47%). The birth-defect spectrum was dramatically altered after earthquake, with the markedly increased occurrences of ear malformations. The ratio of preterm birth post-earthquake (7.41%) is significant increased than that of pre-earthquake (5.63%). For the birth outcomes of twins, significant differences of the ratio of twins, birth weight, ratio of low birthweight and birth-defect rate were observed after earthquake.ConclusionA hospital-based study of birth outcomes impacted by the Wenchuan earthquake shows that the earthquake was associated with significant effects on birth outcomes, indicating it is a major monitor for long-term pregnant outcomes.
A morphological and immunocytochemical study of the Golgi apparatus in pachytene spermatocytes was performed in an effort to correlate the structure and function of this organelle during meiotic prophase. In stages I-III of the cycle, the Golgi complex of pachytene spermatocytes is a flattened discoid, 0.5-1 microns in diameter, composed of vesicles interspersed with classically described Golgi cisternae. During subsequent maturation of pachytene spermatocytes (stages IV-XIII), the size of the Golgi complex increases significantly, attaining a size of 2-3 microns. However, unlike pachytene spermatocytes of stages I-III, the majority of the Golgi complex of more mature spermatocytes is characterized by an abundance of distinct stacks of cisternae interspersed with numerous vesicles and tubules. The composition of the Golgi complex was also studied by using two monoclonal antibodies that recognize either the cis or the trans Golgi cisternae, respectively, and employing biotin-streptavidin-peroxidase immunocytochemistry in 5 micron frozen sections of testes. Immunodetection of the distinct cisternae revealed that the increase in size of the Golgi complex during maturation of pachytene spermatocytes was due predominantly to an accumulation of trans Golgi; the amount of cis Golgi remained unchanged. The morphological data presented in this study are consistent with an heightened secretory activity of pachytene spermatocytes during their maturation. In addition, the increase in size of the Golgi apparatus during the extensive prophase of pachytene spermatocytes may suggest that the mechanism employed by germ cells to partition the Golgi complex during the first division of meiosis varies significantly from that of somatic cells undergoing mitosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.