a b s t r a c tIt is well known that the standard Breusch and Pagan (1980) LM test for cross-equation correlation in a SUR model is not appropriate for testing cross-sectional dependence in panel data models when the number of cross-sectional units (n) is large and the number of time periods (T ) is small. In fact, a scaled version of this LM test was proposed by Pesaran (2004) and its finite sample bias was corrected by Pesaran et al. (2008). This was done in the context of a heterogeneous panel data model. This paper derives the asymptotic bias of this scaled version of the LM test in the context of a fixed effects homogeneous panel data model. This asymptotic bias is found to be a constant related to n and T , which suggests a simple bias corrected LM test for the null hypothesis. Additionally, the paper carries out some Monte Carlo experiments to compare the finite sample properties of this proposed test with existing tests for cross-sectional dependence.
Integrative analysis of disparate data blocks measured on a common set of experimental subjects is a major challenge in modern data analysis. This data structure naturally motivates the simultaneous exploration of the joint and individual variation within each data block resulting in new insights. For instance, there is a strong desire to integrate the multiple genomic data sets in The Cancer Genome Atlas to characterize the common and also the unique aspects of cancer genetics and cell biology for each source. In this paper we introduce Angle-Based Joint and Individual Variation Explained capturing both joint and individual variation within each data block. This is a major improvement over earlier approaches to this challenge in terms of a new conceptual understanding, much better adaption to data heterogeneity and a fast linear algebra computation. Important mathematical contributions are the use of score subspaces as the principal descriptors of variation structure and the use of perturbation theory as the guide for variation segmentation. This leads to an exploratory data analysis method which is insensitive to the heterogeneity among data blocks and does not require separate normalization. An application to cancer data reveals different behaviors of each type of signal in characterizing tumor subtypes. An application to a mortality data set reveals interesting historical lessons. Software and data are available at GitHub https://github.com/MeileiJiang/AJIVE_Project.
This paper extends Pesaran's (2006) work on common correlated e¤ects (CCE) estimators for large heterogeneous panels with a general multifactor error structure by allowing for unknown common structural breaks. Structural breaks due to new policy implementation or major technological shocks, are more likely to occur over a longer time span. Consequently, ignoring structural breaks may lead to inconsistent estimation and invalid inference. We propose a general framework that includes heterogeneous panel data models and structural break models as special cases. The least squares method proposed by Bai (1997aBai ( , 2010 is applied to estimate the common change points, and the consistency of the estimated change points is established. We …nd that the CCE estimator have the same asymptotic distribution as if the true change points were known. Additionally, Monte Carlo simulations are used to verify the main results of this paper.
We introduce the pyunicorn (Pythonic unified complex network and recurrence analysis toolbox) open source software package for applying and combining modern methods of data analysis and modeling from complex network theory and nonlinear time series analysis. pyunicorn is a fully object-oriented and easily parallelizable package written in the language Python. It allows for the construction of functional networks such as climate networks in climatology or functional brain networks in neuroscience representing the structure of statistical interrelationships in large data sets of time series and, subsequently, investigating this structure using advanced methods of complex network theory such as measures and models for spatial networks, networks of interacting networks, node-weighted statistics or network surrogates. Additionally, pyunicorn provides insights into the nonlinear dynamics of complex systems as recorded in uni-and multivariate time series from a non-traditional perspective by means of recurrence quantification analysis (RQA), recurrence networks, visibility graphs and construction of surrogate time series. The range of possible applications of the library is outlined, drawing on several examples mainly from the field of climatology.Network theory and nonlinear time series analysis provide powerful tools for the study of complex systems in various disciplines such as climatology, neuroscience, social science, infrastructure or economics. In the last years, combining both frameworks has yielded a wealth of new approaches for understanding and modeling the structure and dynamics of such systems based on the statistical analysis of network or uni-and multivariate time series. The pyunicorn software package (available at https://github.com/pik-copan/pyunicorn) facilitates the innovative synthesis of methods from network theory and nonlinear time series analysis in order to develop novel integrated methodologies. This paper provides an overview of the functionality provided by pyunicorn, introduces the theoretical concepts behind it and provides examples in the form of selected use cases mainly in the fields of climatology and paleoclimatology.
If the Paris Agreement targets are to be met, there may be very few years left for policy makers to start cutting emissions. Here we calculate by what year, at the latest, one has to take action to keep global warming below the 2 K target (relative to pre-industrial levels) at the year 2100 with a 67 % probability; we call this the point of no return (PNR). Using a novel, stochastic model of CO 2 concentration and global mean surface temperature derived from the CMIP5 ensemble simulations, we find that cumulative CO 2 emissions from 2015 onwards may not exceed 424 GtC and that the PNR is 2035 for the policy scenario where the share of renewable energy rises by 2 % year −1 . Pushing this increase to 5 % year −1 delays the PNR until 2045. For the 1.5 K target, the carbon budget is only 198 GtC and there is no time left before starting to increase the renewable share by 2 % year −1 . If the risk tolerance is tightened to 5 %, the PNR is brought forward to 2022 for the 2 K target and has been passed already for the 1.5 K target. Including substantial negative emissions towards the end of the century delays the PNR from 2035 to 2042 for the 2 K target and to 2026 for the 1.5 K target. We thus show how the PNR is impacted not only by the temperature target and the speed by which emissions are cut but also by risk tolerance, climate uncertainties and the potential for negative emissions. Sensitivity studies show that the PNR is robust with uncertainties of at most a few years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.