Over the past few years, unmanned aerial vehicles (UAV), also known as drones, have been adopted as part of a new logistic method in the commercial sector called "last-mile delivery". In this novel approach, they are deployed alongside trucks to deliver goods to customers to improve the quality of ser-
Constrained optimum tree (COT) and constrained optimum path (COP) problems arise in many real-life applications and are ubiquitous in communication networks. They have been traditionally approached by dedicated algorithms, which are often hard to extend with side constraints and to apply widely. This paper proposes a constraint-based local search framework for COT/COP applications, bringing the compositionality, reuse, and extensibility at the core of constraint-based local search and constraint programming systems. The modeling contribution is the ability to express compositional models for various COT/COP applications at a high level of abstraction, while cleanly separating the model and the search procedure. The main technical contribution is a connected neighborhood based on rooted spanning trees to find high-quality solutions to COP problems. This framework is applied to some COT/COP problems, e.g., the quorumcast routing problem, the edge-disjoint paths problem, and the routing and wavelength assignment with delay side constraints problem. Computational results show the potential importance of the approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.