The use of Unmanned Aerial Vehicles (UAVs) is rapidly growing in popularity. Initially introduced for military purposes, over the past few years, UAVs and related technologies have successfully transitioned to a whole new range of civilian applications such as delivery, logistics, surveillance, entertainment, and so forth. They have opened new possibilities such as allowing operation in otherwise difficult or hazardous areas, for instance. For all applications, one foremost concern is the selection of the paths and trajectories of UAVs, and at the same time, UAVs control comes with many challenges, as they have limited energy, limited load capacity and are vulnerable to difficult weather conditions. Generally, efficiently operating a drone can be mathematically formalized as a path optimization problem under some constraints. This shares some commonalities with similar problems that have been extensively studied in the context of urban vehicles and it is only natural that the recent literature has extended the latter to fit aerial vehicle constraints. The knowledge of such problems, their formulation, the resolution methods proposed—through the variants induced specifically by UAVs features—are of interest for practitioners for any UAV application. Hence, in this study, we propose a review of existing literature devoted to such UAV path optimization problems, focusing specifically on the sub-class of problems that consider the mobility on a macroscopic scale. These are related to the two existing general classic ones—the Traveling Salesman Problem and the Vehicle Routing Problem. We analyze the recent literature that adapted the problems to the UAV context, provide an extensive classification and taxonomy of their problems and their formulation and also give a synthetic overview of the resolution techniques, performance metrics and obtained numerical results.