This paper presents the mid-field model for an ultraviolet C light emitting diode (UVC LED) of wavelength around 275±5 nm by comparison of the 2-dimension (2-D) gray-level image captured from a mono-CMOS sensor and simulated irradiance pattern. Because of UVC light, we propose using a fluorescent film to absorb UVC light and re-emit visible light so that the 2-D image could be captured. The analysis and calibration to obtain accurate gray level of image are performed. Finally, we achieve the mid-field model with high accuracy. Furthermore, this model is also applied for dome lens design and then compares the performance with fabricated samples in measurement to expertise its validity.
In this paper, we propose and demonstrate to use of a single reflector with 68 segments to project vehicle low beam and high beam with the use of a GaN-based mini-LED matrix, which is a 5 × 6 LED die array. The design of the reflector is based on light field technology in considering etendue from the light source across the segments. The group of the segments with smaller etendue from the LED dies in the bottom 2 rows are used to project low beams. When the other LED dies are turned on, the reflector will project light upward and form the high beam. The selection of the turn-on LED dies in the mini-LED matrix can adjust the width of the illumination pattern so that an adaptive low/high beam can be performed. Besides, to extend the functionality of the headlamp module, we propose to dispense IR phosphor on LED dies in the high-beam zone of the GaN-based mini-LED matrix. Thus the vehicle can emit IR high beam, which can be imaged through a camera and can be incorporated with machine vision for an autonomous vehicle without using a complicated adaptive headlight to avoid glare. The proposed multi-function in spatial and spectral domains will be helpful to various applications with use of a mini-LED matrix.
Ultraviolet C (UVC) radiation has been considered a possible option to alleviate the seriousness of black spots on bananas during preservation which help increase economic efficiency. In this study, using 275 nm UVC light-emitting diodes (LEDs), a preliminary cavity with dimensions of 30 × 30 × 30 cm was designed and fabricated to aid in reducing black spots on bananas with the aim of application in the factory conveyor belts. The UVC irradiance distribution was thoroughly monitored for many sections at different box heights in both simulation and measurement, with a dominant range of 6–9 W/m2 in the middle. Afterward, trials were conducted in vitro and in vivo at different selected UVC doses. The results in vitro revealed that a dose of over 0.36 kJ/m2 has an excellent effect on inhibiting the colonial germination of fungal Colletotrichum musae, a common species of fungi causing black spot disease on bananas. In vivo conditions, with a short exposure time of around 5 s, the black spots on UVC-irradiated banana peel significantly reduced with minimal sensory damage compared to a control banana via observation after seven days from treatment. Finally, the optimal UVC dose is proposed from 0.030 to 0.045 kJ/m2 for the one-time treatment when considering the upper surface of the banana. With flexibility advantage and short exposure time, the fabricated cavity (box) promises to bring a lot of application potential to aid banana preservation in factories and households.
In this study, we proposed and demonstrated a circuit design for solving problems related to blue light leakage (e.g., eye damage) when phosphor-converted white light-emitting diodes (pcW-LEDs) overheat. This circuit only needs a positive thermal coefficient thermistor, resistor, and diodes in series and parallel; thus, it can easily be integrated into components. Simulations and corresponding experimental results show that this method can accurately suppress the overheating component’s injection current and allow for LEDs to work normally after returning to the operating temperature. It thus allows the user's eyes to be actively protected, e.g., to avoid exposure to the bluish light when overheating occurs. In addition, the quenching of luminous flux is a signal to remind the user to replace the LED. The proposed method is low-cost, effective, simple, and useful for increasing the quality of LED lighting and biological safety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.