We introduce a current development in optical design for vehicle forward lighting based on solid-state lighting, in particular, phosphor-converted white LEDs. The vehicles include bicycles, bikes, and automobiles. Although the requirements regulating different vehicles are different, the low beam always requires a high-contrast cutoff line. Three optical design approaches are discussed; these include a projection lens incorporated with a baffle or beam shaper, multisegment reflectors, and complex lenses. A new design approach called light field management technology for the multisegment reflector is introduced. In addition, the possible related manufacturing errors and the robustness of different optical approaches are analyzed. Finally, we introduce three approaches to adaptive forward lighting that provide a driver with brighter and clearer vision without inducing glare to people on the roadway. The application of video projection technology to roadway illumination could be a trend of vehicle forward lighting based on solid-state lighting. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
In this paper, we propose and demonstrate to use of a single reflector with 68 segments to project vehicle low beam and high beam with the use of a GaN-based mini-LED matrix, which is a 5 × 6 LED die array. The design of the reflector is based on light field technology in considering etendue from the light source across the segments. The group of the segments with smaller etendue from the LED dies in the bottom 2 rows are used to project low beams. When the other LED dies are turned on, the reflector will project light upward and form the high beam. The selection of the turn-on LED dies in the mini-LED matrix can adjust the width of the illumination pattern so that an adaptive low/high beam can be performed. Besides, to extend the functionality of the headlamp module, we propose to dispense IR phosphor on LED dies in the high-beam zone of the GaN-based mini-LED matrix. Thus the vehicle can emit IR high beam, which can be imaged through a camera and can be incorporated with machine vision for an autonomous vehicle without using a complicated adaptive headlight to avoid glare. The proposed multi-function in spatial and spectral domains will be helpful to various applications with use of a mini-LED matrix.
In this study, we use 30 mini-LED arrays as the light source of the bike lamp. A single reflector with 68 segments to project vehicle low beam and high beam with the use of a GaN-based mini-LED matrix, which is a 30 LED dies array. The design of the reflector is based on light field technology in considering etendue from the light source across the segments. The group of the segments with smaller etendue from the LED dies in the bottom 2 rows are used to project low beams. When the other LED dies are turned on, the reflector will project light upward and form the high beam. The selection of the turn-on LED dies in the mini-LED matrix can adjust the width of the illumination pattern so that an adaptive low/high beam can be performed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.