Ideas that challenge the status quo either evaporate or dominate. The study of opinion dynamics in the socio-physics literature treats space as uniform and considers individuals in an isolated community, using ordinary differential equation (ODE) models. We extend these ODE models to include multiple communities and their interactions. These extended ODE models can be thought of as being ODEs on directed graphs. We study in detail these models to determine conditions under which there will be consensus and pluralism within the system. Most of the consensus/pluralism analysis is done for the case of one and two cities. However, we numerically show for the case of a symmetric cycle graph that an elementary bifurcation analysis provides insight into the phenomena of clustering. Moreover, for the case of a cycle graph with a hub, we discuss how having a sufficient proportion of zealots in the hub leads to the entire network sharing the opinion of the zealots.This article is part of the theme issue 'Stability of nonlinear waves and patterns and related topics'.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.