Background Glioblastoma (GBM) is the most malignant grade of glioma. Highly aggressive characteristics of GBM and poor prognosis cause GBM-related deaths. The potential prognostic biomarkers remain to be demonstrated. This research builds up predictive gene targets of expression alterations in GBM utilizing bioinformatics analysis. Methods and results The microarray datasets (GSE15824 and GSE16011) associated with GBM were obtained from Gene Expression Omnibus (GEO) database to identify the differentially expressed genes (DEGs) between GBM and non-tumor tissues. In total, 719 DEGs were obtained and subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) for function enrichment analysis. Furthermore, we constructed protein–protein Interaction (PPI) network among DEGs utilizing Search Tool for the Retrieval of Interacting Genes (STRING) online tool and Cytoscape software. The DEGs of degree > 10 was selected as hub genes, including 73 upregulated genes and 21 downregulated genes. Moreover, MCODE application in Cytoscape software was employed to identify three key modules involved in GBM development and prognosis. Additionally, we used the Gene expression profiling and interactive analyses (GEPIA) online tool to further confirm four genes involving in poor prognosis of GBM patients, including interferon-gamma-inducible protein 30 (IFI30), major histocompatibility complex class II-DM alpha (HLA-DMA), Prolyl 4-hydroxylase beta polypeptide (P4HB) and reticulocalbin-1 (RCN1). Furthermore, the correlation analysis indicated that the expression of IFI30, an acknowledged biomarker in glioma, was positively correlated with HLA-DMA, P4HB and RCN1. RCN1 expression was positively correlated with P4HB and HLA-DMA. Moreover, qRT-PCR and immunohistochemistry analysis further validated the upregulation of four prognostic markers in GBM tissues. Conclusions Analysis of multiple datasets combined with global network information and experimental verification presents a successful approach to uncover the risk hub genes and prognostic markers of GBM. Our study identified four risk- and prognostic-related gene signatures, including IFI30, HLA-DMA, P4HB and RCN1. This gene sets contribute a new perspective to improve the diagnostic, prognostic, and therapeutic outcomes of GBM.
Glioma is an intracranial malignant tumor and remains largely incurable. Circular RNAs are prominent modulators in glioma progression. This study investigated the function of circular RNA DLC1 (circDLC1) in the malignant proliferation of glioma cells. circDLC1 expression in glioma tissues and cells was determined using RT-qPCR. The effect of circDLC1 on the malignant proliferation of glioma cells was analyzed using CCK-8, colony formation, and EdU staining assays. METTL3, miR-671-5p, and CTNNBIP1 expressions were determined. N6 methyladenosine (m6A) level of circDLC1 was analyzed using MeRIP. The binding relationship between miR-671-5p and circDLC1 or CTNNBIP1 was verified using RNA pull-down and dual-luciferase assays. A xenograft tumor model was established in nude mice to verify the effect of METTL3-mediated circDLC1 on glioma in vivo. circDLC1 was poorly expressed in glioma. circDLC1 overexpression suppressed glioma cell proliferation. Mechanically, METTL3-mediated m6A modification enhanced circDLC1 stability and upregulated circDLC1 expression in glioma. circDLC1 upregulated CTNNBIP1 transcription by competitively binding to miR-671-5p. METTL3 overexpression repressed the malignant proliferation of glioma via circDLC1/miR-671-5p/CTNNBIP1 in vivo. Collectively, METTL3-mediated m6A modification upregulated circDLC1 expression, and circDLC1 promoted CTNNBIP1 transcription by sponging miR-671-5p, thus repressing the malignant proliferation of glioma.
Secreted frizzled-related protein 2 (SFRP2) is a glycoprotein with frizzled-like cysteine-rich domain that binds with Wnt ligands or frizzled receptors to regulate Wnt signaling. SFRP2 is frequently hypermethylated in glioma patients, and analysis of TCGA data indicates that SFRP2 is one of the most downregulated genes in radiotherapy treated glioma patients. In the present study, we aimed to explore the potential function of SFRP2 in tumorigenesis and radioresistance of glioma. The RNA sequencing data of TCGA glioma samples were downloaded and analyzed. SFRP2 expression in 166 glioma patients was evaluated by qRT-PCR. The potential functions of SFRP2 in glioma were evaluated by loss-of-function assays and gain-of-function assays in glioma cell lines. We found that SFRP2 was downregulated in radiotherapy-treated glioma patients, and low SFRP2 expression was correlated with advanced tumor stage and poor prognosis. CRISP/Cas9-meidated SFRP2 knockdown promoted soft agar colony formation, cancer stemness and radioresistance of glioma cells, while enforced SFRP2 expression exhibited opposite effects. Moreover, Wnt/β-catenin signaling was activated in radiotherapy treated glioma patients. SFRP2 knockdown activated Wnt/β-catenin signaling in glioma cell lines, while overexpression of SFRP2 inhibited Wnt/β-catenin activation. Besides, pharmacological inhibition of Wnt/β-catenin signaling by XAV-939 abrogated the effects of SFRP2 knockdown on cancer stemness and radioresistance of glioma cells. Our data for the first time demonstrated a role of SFRP2 in radioresistance of glioma cells, and suggested that inhibition of Wnt/β-catenin signaling might be a potential strategy for increasing radiosensitivity of glioma patients.
Integrins have become a target for novel therapeutic strategies against malignant gliomas. Cilengitide, a synthetic Arg-Gly-Asp (RGD)-motif peptide, interferes with ligand binding to avb3 and avb5 integrins and is currently investigated in clinical trials. Integrins may also be involved in the activation of transforming growth factor (TGF)-b, a mediator of invasiveness and immune escape of glioma cells. Using flow cytometry, we demonstrate that the target integrins of cilengitide are expressed not only in glioblastoma blood vessels, but also by tumor cells. After exposure of glioma cells to cilengitide, we noticed reduced phosphorylation of Smad2 in most glioma cell lines, including stem-like glioma cells. Phophorylation of Smad2, but not cilengitide-induced detachment, is rescued by addition of recombinant TGF-b. Administration of cilengitide to glioma cells results in reduced TGF-b-mediated reporter gene activity. Furthermore, exposure to cilengitide leads to decreased TGF-b 1 and TGF-b 2 mRNA and protein expression. These effects are mimicked by blocking av, b3 or b5 antibodies or by silencing of integrins av, b3, b5 or b8 using RNA interference. Treatment of mice bearing experimental LN-308 glioma xenografts with cilengitide results in reduced pSmad2 levels. Taken together, cilengitide may exert anti-invasive and immune stimulatory activity in human glioblastoma patients by its anti-TGF-b properties.
Glioma is an intracranial malignant tumor and remains largely incurable. circular RNAs are prominent modulators in glioma progression. This study investigated the function of circular RNA DLC1 (circDCL1) in the malignant proliferation of glioma cells. circDCL1 expression in glioma tissues and cells was determined using RT-qPCR. The effect of circDCL1 on the malignant proliferation of glioma cells was analyzed using CCK-8, colony formation, and EdU staining assays. METTL3, miR-671-5p, and CTNNBIP1 expressions were determined. N6 methyladenosine (m6A) level of circDCL1 was analyzed using MeRIP. The binding relationship between miR-671-5p and circDCL1 or CTNNBIP1 was verified using RNA pull-down and dual-luciferase assays. A xenograft tumor model was established in nude mice to verify the effect of METTL3-mediated circDCL1 on glioma in vivo. circDCL1 was poorly expressed in glioma. circDCL1 overexpression suppressed glioma cell proliferation, while circDCL1 silencing showed an opposite trend. Mechanically, METTL3-mediated m6A modification enhanced circDCL1 stability and upregulated circDCL1 expression in glioma. circDCL1 upregulated CTNNBIP1 transcription by competitively binding to miR-671-5p. METTL3 overexpression repressed the malignant proliferation of glioma via circDCL1/miR-671-5p/CTNNBIP1 in vivo. Collectively, METTL3-mediated m6A modification upregulated circDCL1 expression, and circDCL1 promoted CTNNBIP1 transcription by sponging miR-671-5p, thus repressing the malignant proliferation of glioma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.