Shaoyao-Gancao decoction (SGD), a traditional Chinese formulae containing Paeoniae Radix and Glycyrrhizae Radix, is commonly used to relieve abdominal pain. It has attracted increasingly much attention as one of the most popular and valuable herbal medicine in clinic. However, the systematic analysis of chemical constituents of SGD are difficult to determine and thus remain unclear. In this paper, a rapid, sensitive, and reliable ultra-performance LC-ESI/quadrupole-TOF high-definition MS (UPLC-ESI-Q-TOF-MS) with automated MetaboLynx analysis in negative ion mode were established to characterize the chemical constituents of SGD. The analysis was performed on a Waters UPLC(TM) HSS T3 (2.1 × 100 mm, 1.8 μm) using gradient elution system. MS/MS fragmentation behavior was proposed for aiding the structural identification of the components. With the optimized conditions, a total of 58 peaks were tentatively characterized by comparing the retention time and mass spectrometry data and retrieving the reference literatures. Of note, 44 ingredients were identified from Glycyrrhizae Radix, and 14 were from Paeoniae Radix. It is concluded that a rapid and robust platform based on UPLC-ESI-Q-TOF-MS was successfully developed for globally identifying multiple-constituent of traditional Chinese medicine prescriptions. This is the first report on systematic analysis of chemical constituents and in vivo metabolites of SGD.
Rhein, an important constituent of Radix et Rhizoma Rhei, has been used to alleviate liver and kidney damage. In this work, plasma pharmacokinetic and biodistribution characteristics of rhein after oral administration was investigated using a rapid and sensitive ultra-performance liquid chromatography coupled to tandem high-definition mass spectrometry (UPLC-MS/MS) method. Mass spectrometry was performed on a Waters Micromass high-definition technology with an electrospray ionization source in positive ion mode. Biosamples were prepared using methanolic precipitation and the separation of rhein was achieved on a UPLC HSS T3 column by linear gradient elution and the total run time was only 4.70 min. Data were analyzed and estimated by compartmental methods using Win-Nonlin Professional version 5.1. Mean pharmacokinetic parameters following single-dose administration of rhein was consistent with a two-compartmental open model. It was found that rhein was distributed and eliminated rapidly in rats and the biodistribution showed the higher levels were in liver, spleen, kidney, heart, lung and the lower level observed in the muscle, adrenal, and thyroid. It was not discovered in brain and showed that rhein could not cross the blood-brain barrier. Our developed UPLC-MS/MS approach was capable of providing complete pharmacokinetic and biodistribution parameters for rhein when administered orally.
Background:Shaoyao-Gancao decoction (SGD), a traditional Chinese medicine formula, has been used for the treatment of abdominal pain and dysmenorrhea disease in Asia over long period of time. Its effectiveness has been confirmed in clinic, but its active constituents remain unclear.Materials and methods:In this paper, a rapid, sensitive and reliable ultra-performance liquid chromatography-electrospray ionization/quadrupole-time-of-flight high-definition mass spectrometry (UPLC-ESI-Q-TOF-MS) in positive and negative ion mode were established to characterize the active constituents of SGD in vitro. The analysis was performed on a Waters UPLCTM HSS T3 (2.1 × 100 mm, 1.8 µm) using gradient elution system. Automated MetaboLynxTM technique was employed to screen for the potentially bioactive components in rat plasma after oral administration of SGD. MS/MS fragmentation behavior was proposed for aiding the structural identification of the components.Results:Based on the developed method of fingerprint analysis, an injection run of the plasma sample was finished in 15.0 min. A total of 12 compounds including 9 prototype components such as gallicacid, albiflorin, liquiritin, pallidiflorin, liquiritigenin, isoLiquiritigenin, formononetin, isolicoflavonol, licoricone, C9H10O3 and 2 metabolites such as liquiritigenin-4’-O-glucuronide, formononetin glucuronide were identified or tentatively characterized. Of note, 3 ingredients were identified from Radix Paeoniae Alba, and 9 were from Radix Glycyrrhizae.Conclusion:The compounds found in dosed plasma could be the effective substances of SGT for treating dysmenorrheal, and may provide important experimental data for further pharmacological and clinical research of SGD. Furthermore, this work has demonstrated that the feasibility of the UPLC-ESI-Q-TOF-MS for rapid and reliable characterization of identification and structural elucidation of the chemical constituents and their metabolites from herbal medicines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.